Avian Influenza (Highly Pathogenic)

Fowl plague, Fowl pest, Brunswick bird plague, Fowl disease, Fowl or bird grippe

Overview

- Organism
- Economic Impact
- Epidemiology
- Transmission
- Clinical Signs
- Diagnosis and Treatment
- Prevention and Control
- Actions to take

The Organism

Influenza Virus

- Family Orthomyxoviridae
- Three main types
 - Type A
 - Multiple species
 - Type B
 - Humans
 - Type C
 - Humans and swine

Influenza A

- Multiple species
 - Humans
 - Avian Influenza
- Most virulent group
- Classification by surface antigens into subtypes
 - Hemagglutinin (H or HA)
 - Neuraminidase (N or NA)

Surface Antigens and Subtypes

- 15 HA and 9 NA for influenza A
 - All in aquatic birds
- Hemagglutinin (HA)
 - Function: Sites for attachment to infect host cells
- Neuraminidase (NA)
 - Function: Remove neuraminic acid from mucin and release from cell

Influenza A

Influenza B

- Mostly humans
- Common
- Less severe than A
- Epidemics occur less often than A
- Human seasonal vaccine
 - Two strains of type A
 - One strain of type B

Influenza C

- Humans and swine
- Different pattern of surface proteins
- Rare
 - Mild to no symptoms
- By age 15, most have antibodies

Avian Influenza

- Pathogenicity based on genetic features and/or severity of disease in poultry
 - Low pathogenic AI (LPAI)
 - H1 to H15 subtypes
 - Highly pathogenic AI (HPAI)
 - Some H5 or H7 subtypes
 - LPAI H5 or H7 subtypes can mutate into HPAI

Importance

History

- 1878: First identified case in Italy
- 1924-25: First U.S. cases
- Low pathogenic avian influenza first identified mid-twentieth century
- 1970's: Migratory waterfowl carriers
- Outbreaks in mink, seals and whales

- Direct losses:
 - Depopulation and disposal
 - High morbidity and mortality
 - Quarantine and surveillance
 - Indemnities
- 1978-2003: Seasonal outbreaks of LPAI in Minnesota cost growers \$22 million

- 1983: U.S. outbreak (H5N2)
 - \$65 million in losses
 - Destruction of 17 million birds
 - 30% increase in egg prices
- 1999-2000: Italy outbreak (H7N1)
 - \$100 million in compensation to farmers
 - 18 million birds destroyed
 - Indirect losses of \$500 million

- 1997: Hong Kong outbreak (H5N1)
 - \$13 million for depopulation and indemnities
 - -1.4 million birds
- 2001: Hong Kong outbreak (H5N1)
 - -1.2 million birds
 - -\$3.8 million

- 2003: European outbreak (H7N7)
 - Over 33 million birds destroyed
 - 4 of Netherlands' poultry stock
 - Cost?
- 2003-2004: SE Asia (H5N1)
 - 8 countries
 - >100 million birds destroyed
 - Cost?
- 2004-2005: SE Asia and Eurasia
 - Spread to Eurasia by migratory birds

Epidemiology

Geographic Distribution

- Worldwide distribution
- Reservoir
 - Free flying aquatic birds:
 Ducks, geese, shorebirds,
 gulls, terns, auks
- Recent outbreaks
 - The Netherlands, Australia, Mexico,
 U.S., SE Asia, Eurasia
- Similarity to Newcastle Disease makes actual distribution difficult to define
- Altered avian ecosystems have created new niche for AI viruses

Morbidity/Mortality

- Approaches 100% in commercial poultry flocks
- Deaths within 2 to 12 days after first signs of illness
- Survivors in poor condition

Center for Food Security and Public Health Iowa State University - Oct 2005

Transmission

Animal Transmission

- Initial source of infection
 - Other poultry, migratory waterfowl, pet birds
- Spread by aerosol, shared drinking water, fomites
- Virus in respiratory secretions and feces
- Virus present in eggs but eggs unlikely to survive and hatch

Human Transmission

- Previously considered non-pathogenic for humans
- 1997, Hong Kong
 - 18 humans infected, 6 died
 - H5N1 virus linked to outbreak in live bird market and area farms
- 2003, the Netherlands
 - -83 confirmed cases in humans, 1 death
 - H7N7 strain

Human Transmission

- 2004-2005, SE Asia
 - -118 cases, 61 deaths
 - Indonesia, Viet Nam, Thailand, Cambodia
 - H5N1 strain
 - Within the vicinity of poultry outbreaks
 - Evidence for human-to-human transmission
- Role of swine
 - Proposed "mixing vessel"

Animals and Highly Pathogenic Avian Influenza

Clinical Signs

- Incubation period: 3-14 days
- Birds found dead
- Drop in egg production
- Neurological signs
- Depression, anorexia, ruffled feathers
- Combs swollen, cyanotic
- Conjunctivitis and respiratory signs

Post Mortem Lesions

 Lesions may be absent with sudden death

Severe congestion of

the musculature

Dehydration

 Subcutaneous edema of head and neck area

Post Mortem Lesions

- Nasal and oral cavity discharge
- Petechiae on serosal surfaces
- Kidneys severely congested
- Severe congestion of the conjunctivae

Sampling

- Before collecting or sending any samples, the proper authorities should be contacted
- Samples should only be sent under secure conditions and to authorized laboratories to prevent the spread of the disease
- HPAI samples may be zoonotic

Diagnosis

- Clinically indistinguishable from virulent Newcastle Disease
- Suspect with:
 - Sudden death
 - Drop in egg production
 - Facial edema, cyanotic combs and wattles
 - Petechial hemorrhages
- Virology and serology necessary for definitive diagnoses

Differential Diagnosis

- Virulent Newcastle disease
- Avian pneumovirus
- Infectious laryngotracheitis
- Infectious bronchitis
- Chlamydia
- Mycoplasma
- Acute bacterial diseases
 - Fowl cholera, E. coli infection

Diagnosis

- Laboratory Tests
 - HP AI is usually diagnosed by virus isolation
- Presence of virus confirmed by
 - -AGID
 - ELISA
 - RT-PCR
- Serology may be helpful

Treatment

- No specific treatment
- Supportive care and antibiotics for secondary infections
- Antivirals (amantadine) effective in

reducing mortality

- Not approved in food animals
- Results in resistant viruses

Avian Influenza in Humans

Clinical Signs in Humans

- 1997: Hong Kong (H5N1)
 - Fever, respiratory, vomiting, diarrhea, pain
 - Fatal cases: severe bilateral pneumonia, liver dysfunction, renal failure, septic shock
- 1979: MP AI in harbor seals (H7N7)
 - Conjunctivitis in humans in contact

Clinical Signs in Humans

- 2003: Netherlands (H7N7)
 - Conjunctivitis
 - Mild influenza or respiratory symptoms
 - Fatal case: acute respiratory distress syndrome
- 2004-2005: S.E. Asia, EurAsia

Public Health Significance

- Risk is low
- Strains vary in ability to infect humans
- High occupational exposure may increase risk
- 2003: 83 cases
 - Human infections from non-compliance with personal biosafety measures
 - Evidence of human-to-human transmission

Prevention and Control

Recommended Actions

- Notification of Authorities
 - Federal Area Veterinarian in Charge (AVIC) www.aphis.usda.gov/vs/area_offices.htm
 - State Veterinarian www.aphis.usda.gov/vs/sregs/official.htm
- Quarantine

Recommended Actions

- Confirmatory diagnosis
- Depopulation may occur
 - Infected premises
 - Contact-exposed premises
 - Contiguous premises

Control and Eradication

- Eliminate insects and mice
- Depopulate flock and destroy carcasses
- Remove manure down to bare concrete
- High pressure spray to clean equipment and surfaces

Spray with residual disinfectant

Prevention

- Import restrictions
- Surveillance
- Appropriate biosecurity
 - Control human traffic
 - Introduction of new birds into flock
 - Avoid open range rearing in waterfowl prevalent areas
- Education of the poultry industry
- Prompt response to MP AI outbreaks

Influenza Vaccine Development

Avian Influenza Vaccine

- Traditional killed vaccines are effective
- Vaccines will protect only against other avian influenza viruses with the same hemagglutinin (H) type.

Influenza A Viruses

- Mutate frequently
 - Antigenic drift
 - Point mutations accumulated during virus replication
 - Antigenic shift
 - Hybrid virus emerges when cell infected with two different influenza viruses
 - Human, avian, swine, equine
 - Transfer of influenza virus to a different species

Influenza A Viruses

Human influenza vaccines

- Antigenic drift
 - Requires new strains to be used in vaccines each year
- Antigenic shift
 - Caused pandemics in 1918, 1957, 1968, and ?
- Current human influenza vaccines have no efficacy against avian influenza

Vaccination

- Drawbacks to vaccination
 - Expensive
 - No cross protection between15 H subtypes
 - Possible creation of reassortant virus
- Inactivated H5 and recombinant vaccine licensed in the U.S. for emergency in HPAI outbreaks

Additional Resources

Internet Resources

- World Organization for Animal Health (OIE)
 - www.oie.int
- USAHA Foreign Animal Diseases "The Gray Book"
 - www.vet.uga.edu/vpp/gray book/index
- World Health Organization
 - www.who.int

Additional Resources

- CDC Centers for Disease Control and Prevention
 - Avian influenza (bird flu) home page
 - www.cdc.gov/flu/avian
- U.S. Department of Agriculture
 - Biosecurity for the birds
 - www.aphis.usda.gov/vs/birdbiosecurity
 - Avian influenza
 - www.aphis.usda.gov/vs/birdbiosecurity/hpai .html

Acknowledgments

Development of this presentation was funded by a grant from the Centers for Disease Control and Prevention to the Center for Food Security and Public Health at Iowa State University.

Author: Katie Steneroden, DVM Co-authors: James Roth, DVM, PhD; Anna Rovid Spickler, DVM, PhD; Alex Ramirez, DVM, MPH; Glenda Dvorak, DVM, MPH