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Molecular Evolution
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Early Evolutionary Studies

Anatomical features were the dominant
criteria used to derive evolutionary

relationships between species since Darwin
till early 1960s

The evolutionary relationships derived from
these relatively subjective observations were
often inconclusive. Some of them were later
proved incorrect
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Evolution and DNA Analysis:
the Giant Panda Riddle

For roughly 100 years scientists were unable to
figure out which family the giant panda belongs to

Giant pandas look like bears but have features that
are unusual for bears and typical for raccoons, e.g.,
they do not hibernate

In 1985, Steven O'Brien and colleagues solved the
giant panda classification problem using DNA
sequences and algorithms
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Evolutionary Tree of Bears and Raccoons
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Evolutionary Trees: DNA-based Approach

40 years ago: Emile Zuckerkand| and Linus
Pauling brought reconstructing evolutionary
relationships with DNA into the spotlight

In the first few years after Zuckerkandl and
Pauling proposed using DNA for evolutionary
studies, the possibility of reconstructing
evolutionary trees by DNA analysis was hotly
debated

Now it is a dominant approach to study
evolution.
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Emile Zuckerkandl on human-gorilla
evolutionary relationships:

From the point of hemoglobin structure, it
appears that gorilla is just an abnormal human,
or man an abnormal gorilla, and the two species
form actually one continuous population.

Emile Zuckerkandl,
Classification and Human Evolution, 1963
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Gaylord Simpson vs. Emile Zuckerkandl:

From the point of hemoglobin structure, it
appears that gorilla is just an abnormal human,
or man an abnormal gorilla, and the two species
form actually one continuous population.

Emile Zuckerkandl,
Classification and Human Evolution, 1963

From any point of view other than that properly
specified, that is of course nonsense. What the
comparison really indicate is that hemoglobin is a
bad choice and has nothing to tell us about
attributes, or indeed tells us a lie.

Gaylord Simpson,
Science, 1964
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Who are closer?

Does genetics show that humans and chimps
are each other’s closest relative?
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Human-Chimpanzee Split?

Beta-globhins (Mol Phyl. Evaol., 1:97 1992)
finc Finger Y (Sci 26
a-1,3-galactosyltransferase

(PMAS, B8:7401,1991)
mtDNA, 4.9 kb (J. Mol Evol., 35:32,1992)

c-myc (J. Mol Evol., 41:262, 1993)
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Chimpanzee-Gorilla Split?

Tyrosine hydru:-:j-,rIaéE mtruﬁ 1

(J. Mol BEvol., 41:10,19395)
Complement [:umpunent Cd intron 9

(lmmunogenet., 42:41, 19595)
Dopamine D4 receptor (FMNAS
Prutamine F"1 |"I r1..| E ||| 3742

Terminal heteruchrumatlm IF' i 'HI 237, 1993)
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Three-way Split?

opsins (PMNAS, T1: 7
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[Am. J Hum. Genet., 5i
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Out of Africa Hypothesis

Around the time the giant panda riddle was
solved, a DNA-based reconstruction of the
human evolutionary tree led to the Out of

Africa Hypothesis that claims our most
ancient ancestor lived in Africa roughly
200,000 years ago
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'Human Evolutionary Tree (contq)
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ut of Africa: Multiregional:

O

Humans evolved in®° Humans evolved in the last two
Africa ~150,000 million years as a single species.
years ago Independent appearance of modern

Humans migrated trjjts in different areas

?euglgiﬁglg?ﬁer  Humans migrated out of Africa

shumanoids arounénixing with other humanoids on
the globe the way

There is no direct - There is a genetic continuity from

descendence from
Neanderthals Neanderthals to humans
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MtDNA analysis supports
“Out of Africa” Hypothesis

African origin of humans inferred from:
- African population was the most diverse

(sub-populations had more time to
diverge)

- The evolutionary tree separated one group
of Africans from a group containing all five
populations.

- Tree was rooted on branch between
groups of greatest difference:
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The evolutionary
tree separates one
group of Africans
from a group
containing all five
populations.

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)
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Human Migration Out of Africa
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Two Neanderthal Discoveries

oF
Feldhofer, ﬁf b
Germany

Fmdhnfan Mazma]skaj.m r"

Mezmaiskaya, FQA If{
Caucasus ﬂ&\sgi%
Distance: a0
25,000km t A




An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

‘Two Neanderthal Discoveries
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Multiregional Hypothesis?

May predict some genetic continuity from
the Neanderthals through to the Cro-
Magnons up to today’'s Europeans

Can explain the occurrence of varying
regional characteristics



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sequencing Neanderthal’s mtDNA

silice plug or cotton plug

* mtDNA from the bone of Neanderthal is used because it

is up to 1,000x more abundant than nuclear DNA

* DNA decay overtime and only a small amount

of ancient DNA can be recovered (upper limit: 100,000
years)

* PCR of mtDNA (fragments are too short, human DNA

may mixed in)
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Neanderthals vs Humans:
surprisingly large divergence

- AMH vs Neanderthal:

22 substitutions and 6
indels in 357 bp
region

- AMH vs AMH
only 8 substitutions
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Evolutionary Trees

How are these trees built from DNA sequences?
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Evolutionary Trees

How are these trees built from DNA sequences?

leaves represent existing species
* Internal vertices represent ancestors

* root represents the oldest evolutionary
ancestor
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Rooted and Unrooted Trees

In the unrooted tree the position of
the root (“oldest ancestor”) is
unknown. Otherwise, they are like
rooted trees

(a) Unrooted tree (b} Rooted tree icy The  same
rooted tree
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Distances Iin Trees

Edges may have weights reflecting:

- Number of mutations on evolutionary path from
one species to another

- Time estimate for evolution of one species into
another

In a tree T, we often compute
d,-j(T) - the length of a path between leaves jand

d,'j( T) — tree distance between i and j
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Distance in Trees: an Exampe

U i

d14=12+13+ 14+ 17 + 12 =68
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Distance Matrix

Given n species, we can compute the nx n
distance matrix D,-j

D,'j may be defined as the edit distance between

a gene in species / and species J, where the
gene of interest is sequenced for all n species.

D,'j — edit distance between i and j
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Edit Distance vs. Tree Distance

Given n species, we can compute the nx n
distance matrix D,-j

D,'j may be defined as the edit distance between

a gene in species / and species J, where the
gene of interest is sequenced for all n species.

D,'j — edit distance between i and j

Note the difference with
d,-j( T) — tree distance between i and j
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Fitting Distance Matrix

Given n species, we can compute the n x n
distance matrix D,-j

Evolution of these genes is described by a
tree that we don’t know.

We need an algorithm to construct a tree that
best fits the distance matrix D,-j
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Fitting Distance Matrix

Lengths of path in an (unknown) tree T

/_H
Fitting means Djj = djji(T)

Edit distance between species (known)
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Reconstructing a 3 Leaved Tree

Tree reconstruction for any 3x3 matrix is
straightforward

We have 3 leaves J, J, k and a center vertex ¢

Observe:
dic + djc = Djj
dic + dkc = Dik

dic + dkc = Djk
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Reconstructing a 3 Leaved Tree (cont'd)
dic * djc = Dj
*t djc + dikc = Dik

2dlC + de + dkC DU
Dik 2d;, + D]k = Djj +

“~ ! Slmlla@y D:: + D /
4Ch dis = (Dl + Djj— biK)/2

dkc = (Dkj + Dgj— Djj)/
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Trees with > 3 Leaves

An tree with n leaves has 2n-3 edges

This means fitting a given tree to a distance
matrix D requires solving a system of “n
choose 2" equations with 2n-3 variables

This is not always possible to solve for n > 3
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Additive Distance Matrices

Matrix Dis m==) (a5 c o

ADDITIVE if there 5|2 o & i
exists a tree Twith ol: & 2

dif(T) = Djj

NON-ADDITIVE §|3 0 3 2 2
otherwise === o222
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Distance Based Phylogeny Problem

Goal: Reconstruct an evolutionary tree from a
distance matrix

Input: n x n distance matrix Dj;

Output: weighted tree T with n leaves fitting D

If D is additive, this problem has a solution
and there is a simple algorithm to solve it
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Using Neighboring Leaves to Construct the Tree

Find neighboring leaves | and j with parent k
Remove the rows and columns of / and j

Add a new row and column corresponding to K,
where the distance from k to any other leaf m can

be computed as: p

™ .
R'-. - Dk,m

Dkm = (Dim + Djm = Di)/2  p % (&)

Fa
o

2 Compress i and j into
.k, iterate algorithm for
rest of tree



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Finding Neighboring Leaves

To find neighboring leaves we simply select a
pair of closest leaves.
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Finding Neighboring Leaves

To find neighboring leaves we simply select a
pair of closest leaves.
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Finding Neighboring Leaves

Closest leaves aren’t necessarily neighbors
I and j are neighbors, but (d,'j =13) > (djk =12)

@ I 6 @
\ 4 O/
2 7
@/Q \@
Finding a pair of neighboring leaves is
a nontrivial problem!
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Neighbor Joining Algorithm

In 1987 Naruya Saitou and Masatoshi Nei
developed a neighbor joining algorithm for
phylogenetic tree reconstruction

Finds a pair of leaves that are close to each
other but far from other leaves: implicitly finds a
pair of neighboring leaves

Advantages: works well for additive and other non-
additive matrices, it does not have the flawed
molecular clock assumption
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Degenerate Triples

A degenerate triple is a set of three distinct
elements 1=i,/,k=n where Djj + Dji = Dij

Element j in a degenerate triple i,j,k lies on the
evolutionary path from i to k (or is attached to
this path by an edge of length 0).
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Looking for Degenerate Triples

If distance matrix D has a degenerate triple
IJ,k then j can be “removed” from D thus
reducing the size of the problem.

If distance matrix D does not have a
degenerate triple i,j,k, one can “create” a
degenerative triple in D by shortening all
hanging edges (in the tree).
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Shortening Hanging Edges to

Produce Degenerate Triples

Shorten all “hanging” edges (edges that
connect leaves) until a degenerate triple is

found
A B C D
_ A 0 4 1o 9 1 .
B 4§ 0 8 7
: C 1w o8 o w4 9 g
Pl 9 7 e o

S
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Finding Degenerate Triples

If there is no degenerate triple, all hanging edges
are reduced by the same amount 0, so that all pair-
wise distances in the matrix are reduced by 20.

Eventually this process collapses one of the leaves

(when d = length of shortest hanging edge), forming
a degenerate triple i,j,k and reducing the size of the

distance matrix D.

The attachment point for j can be recovered in the
reverse transformations by saving Djj for each

collapsed leaf.
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Reconstructing Trees for Additive Distance Matrices
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AdditivePhylogeny Algorithm

- AdditivePhylogeny(D)

2 ifDis a2 x 2 matrix

3. T =tree of a single edge of length D1 2
4. return T

> if D is non-degenerate

°. O = trimming parameter of matrix D

7 foralll1<i#Zj<n

8. Djj = Djj - 20

>  else

10. 5=O
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AdditiveP hylogeny (cont’d)

' Find atriple i, j, k in D such that Djj + Djk = Djk
2 X = Dij

Remove jth row and jth column from D

4. T = AdditivePhylogeny(D)

2 Add a new vertex v to T at distance x from i to k

6. Add j back to T by creating an edge (v,j) of length O
7 foreveryleaflin T

8. if distance from | to v in the tree # D)

% output “matrix is not additive”

10. return

. Extend all “hanging” edges by length &
12 return T



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Four Point Condition

AdditivePhylogeny provides a way to check if
distance matrix D is additive

An even more efficient additivity check is
the “four-point condition”

Let 71 <i,,k,/< n be four distinct leaves in a
tree
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The Four Point Condition (contd)
Compute: 1. Djj + Dy, 2. Djyc + Djj, 3. Djj + Djc

2 and 3 represent

the same 1 represents
number: the a smaller

length of all number: the
edges + the length of all
middle edge (it is edges — the
counted twice) middle edge
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The Four Point Condition: Theorem

The four point condition for the quartet i j,k,/
IS satisfied if two of these sums are the same,
with the third sum smaller than these first two

Theorem : An n x n matrix D is additive if and
only if the four point condition holds for every
quartet 1 <jjk/<n
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Least Squares Distance Phylogeny
Problem

If the distance matrix D is NOT additive, then we look for a
tree T that approximates D the best:

Squared Error: ¥ i (dji(T) — Djj)?

Squared Error is a measure of the quality of the fit between
distance matrix and the tree: we want to minimize it.

Least Squares Distance Phylogeny Problem: finding the
best approximation tree T for a non-additive matrix D (NP-
hard).
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UPGMA: Unweighted Pair Group
Method with Arithmetic Mean

UPGMA is a clustering algorithm that:

- computes the distance between clusters
using average pairwise distance

- assigns a height to every vertex in the tree,
effectively assuming the presence of a
molecular clock and dating every vertex
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UPGMA’s Weakness

The algorithm produces an ultrametric tree :
the distance from the root to any leaf is the

sSame

UPGMA assumes a constant molecular
clock: all species represented by the
leaves in the tree are assumed to
accumulate mutations (and thus evolve) at
the same rate. This is a major pitfalls of
UPGMA.
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UPGMA'’s Weakness: Example

Correct tree
UPGMA
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Clustering in UPGMA

Given two disjoint clusters Cj, Cj of sequences,
1
ajj = S{p ICi, g €Cjj9pq
Cil “ICj

Note that if Cx = C;j E Cj, then distance to
another cluster Cj is:

dif |Cjl +dji |Cji

dyl =
ICil +1Cj
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UPGMA Algorithm

Initialization:
Assign each x; to its own cluster C;

Define one leaf per sequence, each at height 0
Iteration:
Find two clusters Cjand Cj such that djjis min

Let C, =Cj E Cj
Add a vertex connecting Cj, Cj and place it at height djj /

2
Delete Cjand C;

Termination:
When a single cluster remains
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'UPGMA Algorithm (conta)
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Alignment Matrix vs. Distance Matrix

Sequence a gene of length m
nucleotides in n species to generate an...

n X m alignment matrix

CANNOT be

transformed back ransform
into alignment _

matrix because >< v Into...
information was

lost on the forward \ \n X n distance
transformation matrix
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Character-Based Tree Reconstruction

Better technique:

- Character-based reconstruction algorithms
use the n x m alignment matrix

(n = # species, m = #characters)

directly instead of using distance matrix.

- GOAL: determine what character strings at
Internal nodes would best explain the character
strings for the n observed species



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Character-Based Tree Reconstruction
(cont’d)
Characters may be nucleotides, where A, G,
C, T are states of this character. Other
characters may be the # of eyes or legs or
the shape of a beak or a fin.

By setting the length of an edge in the tree to
the Hamming distance, we may define the
parsimony score of the tree as the sum of
the lengths (weights) of the edges
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Parsimony Approach to Evolutionary
Tree Reconstruction

Applies Occam’s razor principle to identify
the simplest explanation for the data

Assumes observed character differences
resulted from the fewest possible mutations

Seeks the tree that yields lowest possible
parsimony score - sum of cost of all
mutations found in the tree
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Parsimony and Tree Reconstruction

ACCC ACCC

/N N
ACCA ACCG ACCA ATCC
AT A

ATCG ATCC ATCG ACCG

Less More

Parsimonious Parsimonious
Score: 6 Score: 5
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Character-Based Tree Reconstruction
(cont’d)

(a) Parsimony Score=1 (b)) Parsimony Score=2

Figure 10.16 If we label a tree’s leaves with characters (in this case, eyebrows and
mouth, each with two states), and choose labels for each internal vertex, we implicitly
create a parsimony score for the tree. By changing the labels in {a) we are able to create
a tree with a better parsimony score in (b).
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Small Parsimony Problem

Input: Tree T with each leaf labeled by an m-
character string.

Output: Labeling of internal vertices of the
tree T minimizing the parsimony score.

We can assume that every leaf is labeled by
a single character, because the characters in
the string are independent.
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Weighted Small Parsimony Problem

A more general version of Small Parsimony
Problem

Input includes a k * k scoring matrix describing
the cost of transformation of each of k states
Into another one

For Small Parsimony problem, the scoring
matrix is based on Hamming distance

dy(v, w) =0 if v=w
dH(v, w) = 1 otherwise
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Scoring Matrices

Small Parsimony Problem  Weighted Parsimony Problem

AT |G|C AT |G|C
AlLO0O 111 Al10|1314|9
T(1(0]11 T13|02 |4
G|1|1(0]|1 G|4]|2|0]|4
C|{1/1]1]0 Cl|9/4[4|0
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Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

Small Parsimony Score: 5

A AlT]c]|c

A Alo[1]1]1

Tl1]0]1]1

T C Gl1]1]0]1

V\N cl1[1]1]0
C GT ¢C
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Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

A

Al TIG|C
VA
T C
AW ASRE
C GT C

Weighted Parsimony Score: 22

Q|| >

O~ W O
AN OIW
A~ IO IN|P>~
oO|lbh|bH O
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Weighted Small Parsimony

Problem: Formulation

Input: Tree T with each leaf labeled by
elements of a k-letter alphabet and a k x k
scoring matrix (d,'j)

Output: Labeling of internal vertices of the
tree T minimizing the weighted parsimony
score
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Sankoff’s Algorithm

Check children’s every N
vertex and determine g &' &=
the minimum between T
them

An example

1 C) =

o Ll o

da B3 2 Ld =

W Fud  miin

C=T R
)



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sankoff Algorithm: Dynamic
Programming

Calculate and keep track of a score for every
possible label at each vertex

- S{{(v) = minimum parsimony score of the subtree
rooted at vertex v if v has character t

The score at each vertex is based on scores
of its children:

- Sf(parent) = min; {sj( left child') + d; ¢ +
minj {s;( right child ) + d; }
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Sankoff Algorithm (cont.)

Begin at leaves:

If leaf has the character in question, score is 0
Else, score is ¥

of ® & ®

EIEAEIE (o0 [em Joo ] D] [a [0 e o] [oo [oo | 0] oo ]
A T G ¢ A T a C A T G C A T @ ¢
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Sankoff Algorithm (cont.)

s |a T 6 ¢ sdv)=min; {s{u)+d;
Al0 3 4 9 .
T|3 0 2 4 +ming{si(w) + dj 4
G 4 2 0 - - Sj ul, Su
C‘?*"“C::Tl:a:lf” wl a4l m
A
Alo|o]o
s4(v)=0
. . T ¥ |3 |¥
Ay T mingisi(w) +dj A
Aj G|¥|4]|¥
Cl¥ |9 |¥
(STccJe o] wfeTe]?)
A T G C AT G C
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Sankoff Algorithm (cont.)

s |a T 6 ¢ sdv)=min; {s{u)+d;
Al0 3 4 9 .
T|3 0 2 4 +ming{si(w) + dj 4
G|4 2 0 4 - Sji | Y, | su
cls ¢« 4 o CVIFINTE] .7 wl ol m
NI A ¥ 0 ¥
s4v)=0
+9=09 T|¥|3|¥
.. . 3 ‘
AS G| ¥ | 4|¥
C 0 9 9
EIEIEIE CHIER XA
BT SR R RS, (R TR
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Sankoff Algorithm (cont.)

s A T G C s{(v) =min; {s;(u) +dj
AlO 3 4 9 -
T|3 0 2 4 +ming{si(w) + dj 4
G|l 4 2 0 4 e
cley « 4 o grrpeTm .-

A

Repeat for T, G, and C
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Sankoff Algorithm (cont.)

Repeat for right subtree
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'Sankoff Algorithm (cont.)

Repeat for root

AT 6 ¢
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Sankoff Algorithm (cont.)

Smallest score at root 1s minimum weighted

parsimony score (UTITWI] In this case, 9 -
© solabel with T
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Sankoff Algorithm: Traveling down
the Tree

The scores at the root vertex have been
computed by going up the tree

After the scores at root vertex are computed
the Sankoff algorithm moves down the tree
and assign each vertex with optimal
character.
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Sankoff Algorithm (cont.)

O 1s derived from 7 + 2

So left child is T, RIS ENEINRLY
And right child i1s T

EARARINY
A T G &
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'Sankoff Algorithm (cont.)

And the tree 1s thus labeled...
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Fitch’s Algorithm

Solves Small Parsimony problem
Dynamic programming in essence

Assigns a set of letter to every vertex in the
tree.

If the two children’s sets of character overlap,
it's the common set of them

If not, it's the combined set of them.
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Fitch’s Algorith M (cont’d)

- " An example:
3 ALY " ‘ j} s , N l:
a C | t a
.a"':::l"“-..
{a, C}){} o {ta}
s y Iy Y \ j: y, e ¥ 4 :
a C t a a
5
a
Po! a a
a : C ---.-__J_,. -~ :-' (
{ f} p 28 tt.a) a F \, & a
/ ~ ¢ —~ S Ny
il N\ - O J 9
’ L L
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Fitch Algorithm

1) Assign a set of possible letters to every
vertex, traversing the tree from leaves to root

Each node’s set is the combination of its
children’s sets (leaves contain their label)
- E.g. if the node we are looking at has a left child

labeled {A, C} and a right child labeled {A, T}, the
node will be given the set {A, C, T}
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Fitch Algorithm (cont.)

2) Assign labels to each vertex, traversing the
tree from root to leaves

Assign root arbitrarily from its set of letters

For all other vertices, if its parent’s label is In
its set of letters, assign it its parent’s label

Else, choose an arbitrary letter from its set as
its label
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Fitch Algorithm (cont.)

A
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Fitch vs. Sankoff

Both have an O(nk) runtime
Are they actually different?

Let’'s compare ...
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Fitch

As seen previously:

{A, C, G}

— {AG {G}

A G G} {G] A G G {G]
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Comparison of Fitch and Sankoff

As seen earlier, the scoring matrix for the Fitch
algorithm is merely:

AT
0|1
110
111
111

G|C
111
111
0|1
110

O >

So let’'s do the same problem using Sankoff
algorithm and this scoring matrix
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\Sankoff
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Sankoff vs. Fitch

The Sankoff algorithm gives the same set of
optimal labels as the Fitch algorithm

For Sankoff algorithm, character t is optimal for
vertex v if S{v) = minq<j<kSj(v)

Denote the set of optimal letters at vertex v as S(v)

If S(/eft child) and S(right child) overlap, S(parent) is the
intersection

Else it's the union of S(left child) and S(right child)
This is also the Fitch recurrence

The two algorithms are identical
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Large Parsimony Problem

Input: An n x m matrix M describing n
species, each represented by an m-character
string

Output: A tree T with n leaves labeled by the
n rows of matrix M, and a labeling of the
internal vertices such that the parsimony
score Iis minimized over all possible trees and
all possible labelings of internal vertices
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Large Parsimony Problem (cont.)

Possible search space is huge, especially as
n increases

* (2n — 3)!! possible rooted trees
© (2n — 5)!! possible unrooted trees

Problem is NP-complete
- Exhaustive search only possible w/ small n(< 10)
Hence, branch and bound or heuristics used
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Nearest Neighbor Interchange
A Greedy Algorithm

A Branch Swapping algorithm
Only evaluates a subset of all possible trees

Defines a neighbor of a tree as one
reachable by a nearest neighbor interchange

- Arearrangement of the four subtrees defined by
one internal edge

- Only three different rearrangements per edge
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'Nearest Neighbor Interchange
(cont.)

= Oz

() . AB|CD
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Nearest Neighbor Interchange

(cont.)

Start with an arbitrary tree and check its
neighbors

Move to a neighbor if it provides the best
Improvement in parsimony score

No way of knowing if the result is the most
parsimonious tree

Could be stuck in local optimum
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Nearest Neighbor Interchange
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Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

A

B

E

N
B \./<G.-'

http://artedi.ebc.uu.se/course/Biolnfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif
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Tree Bisection and Reconnection
Another Branch Swapping Algorithm

¢ Most extensive  «\ l |
swapping routine S
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Homoplasy

Given:
1: CAGCAGCAG
: CAGCAGCAG
: CAGCAGCAGCAG
: CAGCAGCAG
: CAGCAGCAG
: CAGCAGCAG
7: CAGCAGCAGCAG

Most would group 1, 2, 4, 5, and 6 as having
evolved from a common ancestor with a single
mutation leading to the presence of 3 and 7

[O)ING) IF ~ GO I\
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Homoplasy

But what if this was the real tree?

6
CAGCAGCAG.] ..CAGCAGCAG.. . -C.AGCAGCAGT CAGCAGCAGCAG...

CAGCAGCAG.. CAGCAGCAGCAG

.CAGCAGCAG...
Common Ancestor
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Homoplasy

6 evolved separately from 4 and 5, but
parsimony would group 4, 5, and 6 together
as having evolved from a common ancestor

Homoplasy: Independent (or parallel)
evolution of same/similar characters

Parsimony results minimize homoplasy, so
If homoplasy is common, parsimony may
give wrong results
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Contradicting Characters

An evolutionary tree is more likely to be
correct when it is supported by multiple
characters, as seen below

Lizard < Human  pNfAMMALIA
Do

Frog 8

* Note: In this case, tails are homoplastic



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Problems with Parsimony

Important to keep in mind that reliance on
purely one method for phylogenetic analysis
provides incomplete picture

When different methods (parsimony,
distance-based, etc.) all give same result,
more likely that the result is correct



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

'How Many Times Evolution
Invented Wings?

- Whiting, et. al. (2003) looked at winged and
wingless stick insects
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Reinventing Wings

Previous studies had shown winged a
wingless transitions

Wingless = winged transition much more
complicated (need to develop many new
biochemical pathways)

Used multiple tree reconstruction
techniques, all of which required re-
evolution of wings
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\I\/Iost Parsimonious Evolutionary Tree
of Winged and Wingless Insects

B Wingless Agathemera crassa
Heteropteryx dilatata

Haaniella dehaanii

—— [ Carausius morosus .
L \—— [ Eurycantha insularis * The eVOhlthIlal'y
] Ph}dmr.im bioculatum tree iS based on
B Neohirasea maerens
B Neohirasea sp. both
| B Sipyloidea sipylus
B Pseudodiacantha mackiottii DNA sequences
B Lopaphus perakensis d /
|| B Lopaphus sphalerus and presence
—Ji—— absence of wings
— mporius guerirn
B Dimorphodes prostasis
B Tropiderus childrenii
V{_: B Eurycnema goliath
* _: B Ctenomorphodes briareus . .
W Extatosomatiaratum o NSt parsimonious
r— [ Anisomorpha ferruginea .
':'wmg gain *"— B Pseudophasmarnufices  T€construction gave a
Wing loss B Aretaon asperrimus .
B Winged 1 g Sungayainexpecata  WiNgless ancestor
— N
N d
i
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Will Wingless Insects Fly Again?

Since the most parsimonious reconstructions
all required the re-invention of wings, it is
most likely that wing developmental
pathways are conserved in wingless stick
iInsects
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Phylogenetic Analysis of HIV Virus

Lafayette, Louisiana, 1994 — A woman
claimed her ex-lover (who was a physician)
iInjected her with HIV+ blood

Records show the physician had drawn blood
from an HIV+ patient that day

But how to prove the blood from that HIV+
patient ended up in the woman?
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HIV Transmission

HIV has a high mutation rate, which can be
used to trace paths of transmission

Two people who got the virus from two
different people will have very different HIV
sequences

Three different tree reconstruction methods
(including parsimony) were used to track
changes in two genes in HIV (gp120 and RT)
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HIV Transmission

Took multiple samples from the patient, the woman,
and controls (non-related HIV+ people)

In every reconstruction, the woman'’s sequences
were found to be evolved from the patient’s
sequences, indicating a close relationship between
the two

Nesting of the victim’s sequences within the patient
sequence indicated the direction of transmission
was from patient to victim

This was the first time phylogenetic analysis was
used )in a court case as evidence (Metzker, et. al.,
2002
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Evolutionary Tree Leads to

Conviction

5 PRECMRT
—  P4AMIC.RT
P5.BCM RT
PEMIC RT
V1.BCM.RT
VZ.ECM.RT

V1 MIC.RT
{vg.wcm

—— P6.BCM.RT
P4BCM.RT

— P1.BCM.RT

PTBCM.RT

PE.MIC.RT
PZBCMRT

FZMIC.RT

P3.MIC.RT
P1.MIC.RT
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Alu Repeats

Alu repeats are most common repeats in human
genome (about 300 bp long)

About 1 million Alu elements make up 10% of the
human genome

They are retrotransposons

they don’t code for protein but copy themselves into RNA
and then back to DNA via reverse transcriptase

Alu elements have been called “selfish” because their
only function seems to be to make more copies of
themselves
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What Makes Alu Elements
Important?

Alu elements began to replicate 60 million
years ago. Their evolution can be used as a
fossil record of primate and human history

Alu insertions are sometimes disruptive and
can result in genetic disorders

Alu mediated recombination can cause
cancer

Alu insertions can be used to determine
genetic distances between human
populations and human migratory history
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Diversity of Alu Elements

Alu Diversity on a scale from 0 to 1
Africans 0.3487 origin of modern humans
E. Asians 0.3104
Europeans 0.2973

Indians 0.3159
0.25 |
|
= 0.2 | Key:
z | + Africa vs. Europe
| A A i f .
% 015 | ‘: .‘;‘ AL, bk s | qucavs. Indlal
2 T .‘,i“ - | " Africa vs. E. Asia
2 e w P 3 ', - | * Europe vs. India
g 0.1 .&4‘ n * fl ot | * Europe vs. E. Asia
= ; “h, " | *E.Asiavs. India
.{; S ’ ".-' ol B o ! |
0.05 ‘ ¢,
T " el A
0 | y . : . i S —
0 3000 6000 9000 12000 15000

geographic distance (km)
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Minimum Spanning Trees

The first algorithm for finding a MST
was developed in 1926 by Otakar
Boruvka. Its purpose was to
minimize the cost of electrical
coverage in Bohemia.

The Problem

Connect all of the cities but use the
least amount of electrical wire

possible. This reduces the cost. i -
We will see how building a Sy [ 1] ,:?.{;g:
MST can be used to study LAY
evolution of Alu repeats
2 a
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What is a Minimum Spanning Tree?

A Minimum Q /7/ /CP

Spanning Tree
of a graph

--connect all
the vertices In
the graph and Q

--minimizes the a

® 9 9o
!

umotedies b g <z< -

Co t24\C/ MST Co 1\7Cj

2

0
Wt
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How can we find a MST?

Prim algorithm (greedy)
Start from a tree T with a single vertex

Add the shortest edge connecting a vertex in
T to a vertex not in T, growing the tree T

This is repeated until every vertexisin T

Prim algorithm can be implemented in O(m logm)
time (m is the number of edges).
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Prim’s Algorithm Example
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Why Prim Algorithm Constructs
Minimum Spanning Tree?

Proof:

This proof applies to a graph with distinct S
edges / \5
Let e be any edge that Prim algorithm | ,|
chose to connect two sets of nodes. \ y
Suppose that Prim’s algorithm is flawed & =y >

and it is cheaper to connect the two sets
of nodes via some other edge f

Notice that since Prim algorithm selected
edge e we know that cost(e) < cost(f)

By connecting the two sets via edge f, the PR ____H'\
cost of connecting the two vertices has / ;
\ |
A 4

Gl

gone up by exactly cost(f) — cost(e)

The contradiction is that edge e does not
belong in the MST yet the MST can’t be
formed without using edge e
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An Alu Element

SINEs are flanked by short direct repeat
sequences and are transcribed by RNA
Polymerase |l

RNA Polymerase III promoter

/\
120bp- ——13bp—— 149bp———

X XA L A AsTACAg R An X
““"wlhg}ft Alu monomer middle right Alu monomer -
N A-rich region e
" poly-A

™ - tail,

" direct flanking repeats, 10-20bp-~  20-80bp
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Alu Subfamilies

We illustrate Alu subfamilies with a 40bp sample segment of
Aludb, AluSx, AluY and AluYab subfamily consensus sequences:

AluJb G Aot -

AluSx  TGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAA- TT
AluY e A..
AluYab C...T..A.C. ... i e it A..

Early analyses identified 4-6 Alu subfamilies.

Willard et al., 1987, Britten et al., 1988; Deininger and Slagel, 1988;
Jurka and Smith, 1988: Quentin, 1988; Matera et al., 1990;
Batzer and Deininger, 1991; Jurka and Milosavljevic, 1991; Shen et al., 1991

What do Alu subfamilies tell us about Alu evolution?
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The Biological Story: Alu Evolution

What do Alu subfamilies tell us about Alu evolution?

AIUTD o oG oo B, _
AluSx  TGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAA-TT
AluY R T A..
AIUYE5  CooTo iAo Con e A..

Aluldb ,\

AlUS A a

LU>Xx

A\
AluY < \ \
AluYa5 -/ N )

EVOLUTIONARY TREE

Aludb AluSx AluY AluYab

PHYLOGENETIC TREE
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Alu Evolution

What do Alu subfamilies tell us about Alu evolution?

AluJb S € A... ... ... ... -
AluSx TGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAA- TT
AluY 1 A..
AluYab C. .. . . A.C. . ittt ittt ettt e eeseennsnenns A..

¢ Aluldb

s AluSx

s AluY

« AluyYab

EVOLUTIONARY TREE PHYLOGENETIC TREE
(see Cordaux et al., 2004)
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Alu Evolution: The Master Alu Theory

evolutionary tree genome

Aluldb —
mutation

AluSx —
mutation

AluY —
mutation

Aluyab —

Shen et al., 1991 conjectured that all Alu repeat elements have
retroposed from “a single master gene’.

Conjecture: 4 subfamilies «<— linear evolution of 1 master gene.
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Alu Evolution: Alu Master Theory
Proven Wrong

Jurka and Milosavljevic, 1991 identified additional subfamilies
which do not fit the linear pattern of evolution:

evolutionary tree genome
Aluldb —
mutation
AluSx —
retrotra nspositiojrl,f"""f mutation
Aluy — —
AluSp .
mutation
AluYah —

The AluSp and AluY subfamily lineages must have been produced
by distinct master genes — this disproves the master Alu theory!
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Minimum Spanning Tree As An
Evolutionary Tree

| Alwl 1: Alulo
subfamilies 7- AluSx
3: AluSq
4: AluSp
3 AluY
7 | AluS 6: AluYas
subfamilies
3
AluY
subfamilies

The evolutionary tree of the 31 Repbase Update subfamilies,
defined as their Minimum Spanning Tree (Kruskal 1956).
14 leaves in this tree = at least 14 Alu source elements.
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Alu Evolution: Minimum Spanning
Tree vs. Phylogenetic Tree

A timeline of Alu subfamily evolution would give
useful information

Problem - building a traditional phylogenetic tree
with Alu subfamilies will not describe Alu evolution
accurately

Why can’t a meaningful typical phylogenetic tree
of Alu subfamilies be constructed?

When constructing a typical phylogenetic tree, the
input is made up of leaf nodes, but no internal
nodes

Alu subfamilies may be either internal or external
nodes of the evolutionary tree because Alu
subfamilies that created new Alu subfamilies are
themselves still present in the genome. Traditional
phylogenetic tree reconstruction methods are not
applicable since they don’t allow for the inclusion
of such internal nodes
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Constructing MST for Alu Evolution

Building an evolutionary tree using an MST will allow for the inclusion

of internal nodes

. Define the length between two subfamilies as the Hamming distance
between their sequences
Root the subfamily with highest average divergence from its consensus
sequence (the oldest subfamily), as the root
It takes ~4 million years for 1% of sequence divergence between
subfamilies to emerge, this allows for the creation of a timeline of Alu
evolution to be created

Why an MST is useful as an evolutionary tree in this case

The less the Hamming distance (edge weight) between two subfamilies,
the more likely that they are directly related

An MST represents a way for Alu subfamilies to have evolved minimizing
the sum of all the edge weights (total Hamming distance between all Alu
subfamilies) which makes it the most parsimonious way and thus the most
likely way for the evolution of the subfamilies to have occurred.
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MST As An Evolutionary Tree

Al 1 15% divergad
subfamuliss - ‘."x T 60 nulhon vears ago
1: AluTo T- AluSx 3 !
2 AluSx 8 AluSx 5 -
3: AluSq Q- AluSqg 3 ]

4: AleSp 10- AluSg 4
5 AluY 11: AluSc_ &
6 Ala¥a5  12: AluY 8

11%: drverged

44 million vears ago

9% diverged
36 nulhon vears ago

8% diverged

41 32 milhon years ago
AlY subfamilies /T\_ TR
T e - 6% diverged
: e P e T T T e 24 pullion years ago
[T TT.‘..-". "'-’.l‘-"--' e e e e e e e e e e e e e e e
I T T 1% to 4% diverged
4 to 16 nulhon vears ago
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Sources

http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec01.pdf
http://bioinformatics.oupjournals.org/cgi/screenpdf/20/3/340.pdf

http://www.absoluteastronomy.com/encyclopedia/M/Mi/
Minimum_spanning_tree.htm

Serafim Batzoglou (UPGMA slides) http://www.stanford.edu/class/
cs262/Slides

Watkins, W.S., Rogers A.R., Ostler C.T., Wooding, S., Bamshad M. J.,
Brassington A.E., Carroll M.L., Nguyen S.V., Walker J.A., Prasas, R.,
Reddy P.G., Das P.K., Batzer M.A., Jorde, L.B.: Genetic Variation
Among World Populations: Inferences From 100 Alu Insertion
Polymorphisms



