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Outline
• Evolutionary Tree Reconstruction
• “Out of Africa” hypothesis
• Did we evolve from Neanderthals? 
• Distance Based Phylogeny
• Neighbor Joining Algorithm
• Additive Phylogeny
• Least Squares Distance Phylogeny
• UPGMA
• Character Based Phylogeny
• Small Parsimony Problem 
• Fitch and Sankoff Algorithms
• Large Parsimony Problem
• Evolution of Wings
• HIV Evolution
• Evolution of Human Repeats
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Early Evolutionary Studies
• Anatomical features were the dominant 

criteria used to derive evolutionary 
relationships between species since Darwin 
till early 1960s

• The evolutionary relationships derived from 
these relatively subjective observations were 
often inconclusive. Some of them were later 
proved incorrect
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Evolution and DNA Analysis: 
the Giant Panda Riddle
• For roughly 100 years scientists were unable to 

figure out which family the giant panda belongs to

• Giant pandas look like bears but have features that 
are unusual for bears and typical for raccoons, e.g., 
they do not hibernate

• In 1985, Steven O’Brien and colleagues solved the 
giant panda classification problem using DNA 
sequences and algorithms
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Evolutionary Tree of Bears and Raccoons
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Evolutionary Trees: DNA-based Approach

• 40 years ago: Emile Zuckerkandl and Linus 
Pauling brought reconstructing evolutionary 
relationships with DNA into the spotlight 

• In the first few years after Zuckerkandl and 
Pauling proposed using DNA for evolutionary 
studies, the possibility of reconstructing 
evolutionary trees by DNA analysis was hotly 
debated

• Now it is a dominant approach to study 
evolution. 
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Emile Zuckerkandl on human-gorilla 
evolutionary relationships:

From the point of hemoglobin structure, it 
appears that gorilla is just an abnormal human, 
or man an abnormal gorilla, and the two species 
form actually one continuous population. 

Emile Zuckerkandl, 
Classification and Human Evolution, 1963
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Gaylord Simpson vs. Emile Zuckerkandl:

From the point of hemoglobin structure, it 
appears that gorilla is just an abnormal human, 
or man an abnormal gorilla, and the two species 
form actually one continuous population. 

Emile Zuckerkandl, 
Classification and Human Evolution, 1963

From any point of view other than that properly 
specified, that is of course nonsense. What the 
comparison really indicate is that hemoglobin is a 
bad choice and has nothing to tell us about 
attributes, or indeed tells us a lie. 

Gaylord Simpson,                                              
Science, 1964
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Who are closer? 



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Human-Chimpanzee Split?
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Chimpanzee-Gorilla Split?  
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Three-way Split? 
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Out of Africa Hypothesis
• Around the time the giant panda riddle was 

solved, a DNA-based reconstruction of the 
human evolutionary tree led to the Out of 
Africa Hypothesis that claims our most 
ancient ancestor lived in Africa roughly 
200,000 years ago
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Human Evolutionary Tree (cont’d)

http://www.mun.ca/biology/scarr/Out_of_Africa2.htm
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The Origin of Humans:
 ”Out of Africa” vs Multiregional Hypothesis

      Out of Africa:
• Humans evolved in 

Africa ~150,000 
years ago

• Humans migrated 
out of Africa, 
replacing other 
shumanoids around 
the globe

• There is no direct 
descendence from 
Neanderthals

     Multiregional:
• Humans evolved in the last two 
million years as a single species. 
Independent appearance of modern 
traits in different areas
• Humans migrated out of Africa 
mixing with other humanoids on 
the way
• There is a genetic continuity from 
Neanderthals to humans
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mtDNA analysis supports 
“Out of Africa” Hypothesis
• African origin of humans inferred from:

• African population was the most diverse        

   (sub-populations had more time to 
diverge)

• The evolutionary tree separated one group 
of Africans from a group containing all five 
populations.

• Tree was rooted on branch between 
groups of greatest difference.
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Evolutionary Tree of Humans (mtDNA)

 

The evolutionary  
tree separates one 
group of Africans 
from a group 
containing all five 
populations.

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)
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Evolutionary Tree of Humans:  (microsatellites)

•   Neighbor joining 
tree for 14 human 
populations 
genotyped with 30 
microsatellite loci.
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Human Migration Out of Africa

http://www.becominghuman.org

1. Yorubans
2. Western Pygmies
3. Eastern Pygmies
4. Hadza
5. !Kung

1

2 3 4

5
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Two Neanderthal Discoveries

Feldhofer,     
Germany

Mezmaiskaya,     
Caucasus

Distance:
 25,000km
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Two Neanderthal Discoveries

• Is there a connection between Neanderthals and today’s Europeans?
• If humans did not evolve from Neanderthals, whom did we evolve from?
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Multiregional Hypothesis?
• May predict some genetic continuity from 

the Neanderthals through to the Cro-
Magnons up to today’s Europeans

• Can explain the occurrence of varying 
regional characteristics
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Sequencing Neanderthal’s mtDNA 

• mtDNA from the bone of Neanderthal is used because it 
is up to 1,000x more abundant than nuclear DNA
• DNA decay overtime and only a small amount
 of ancient DNA can be recovered (upper limit: 100,000 
years)
• PCR of mtDNA (fragments are too short, human DNA 
may mixed in)
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Neanderthals vs Humans: 
surprisingly large divergence    
 

• AMH vs Neanderthal:
• 22 substitutions and 6 

indels in 357 bp 
region

• AMH vs AMH
• only 8 substitutions
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Evolutionary Trees
How are these trees built from DNA sequences?
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Evolutionary Trees
How are these trees built from DNA sequences?

• leaves represent existing species

• internal vertices represent ancestors

• root represents the oldest evolutionary 
ancestor
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Rooted and Unrooted Trees
In the unrooted tree the position of 
the root (“oldest ancestor”) is 
unknown. Otherwise, they are like 
rooted trees
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Distances in Trees
• Edges may have weights reflecting:

• Number of mutations on evolutionary path from 
one species to another

• Time estimate for evolution of one species into 
another

• In a tree T, we often compute 

  dij(T) - the length of a path between leaves i and j 

        dij(T) – tree distance between i and j 
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Distance in Trees: an Exampe

       d1,4 = 12 + 13 + 14 + 17 + 12 = 68

i

j
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Distance Matrix
• Given n species, we can compute the n x n 

distance matrix Dij

• Dij may be defined as the edit distance between 

a gene in species i and species j, where the 
gene of interest is sequenced for all n species.

           Dij – edit distance between i and j 



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Edit Distance vs. Tree Distance
• Given n species, we can compute the n x n 

distance matrix Dij

• Dij may be defined as the edit distance between 

a gene in species i and species j, where the 
gene of interest is sequenced for all n species.

           Dij – edit distance between i and j 

• Note the difference with 

       dij(T) – tree distance between i and j 
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Fitting Distance Matrix
• Given n species, we can compute the n x n 

distance matrix Dij
• Evolution of these genes is described by a 

tree that we don’t know.
• We need an algorithm to construct a tree that 

best fits the distance matrix Dij
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Fitting Distance Matrix

• Fitting means Dij = dij(T)

Lengths of path in an (unknown) tree T

Edit distance between species (known)
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Reconstructing a 3 Leaved Tree
• Tree reconstruction for any 3x3 matrix is 

straightforward
• We have 3 leaves i, j, k and a center vertex c

Observe:

dic + djc = Dij

dic + dkc = Dik

djc + dkc = Djk
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Reconstructing a 3 Leaved Tree (cont’d)

 dic + djc = Dij

      +  dic + dkc = Dik

        2dic + djc + dkc = Dij + 

Dik 2dic +    Djk       = Dij + 

Dik

dic = (Dij + Dik – Djk)/

2

Similarly,
djc = (Dij + Djk – Dik)/2
dkc = (Dki + Dkj – Dij)/

2
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Trees with > 3 Leaves
• An tree with n leaves has 2n-3 edges

• This means fitting a given tree to a distance 
matrix D requires solving a system of “n 
choose 2” equations with  2n-3 variables

• This is not always possible to solve for n > 3
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Additive Distance Matrices

Matrix D is 
ADDITIVE if there 
exists a tree T with 
dij(T) = Dij

NON-ADDITIVE 
otherwise
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Distance Based Phylogeny Problem

• Goal: Reconstruct an evolutionary tree from a 
distance matrix

• Input: n x n distance matrix Dij
• Output: weighted tree T with n leaves fitting D

• If D is additive, this problem has a solution 
and there is a simple algorithm to solve it
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Using Neighboring Leaves to Construct the Tree

• Find neighboring leaves i and j with parent k
• Remove the rows and columns of i and j
• Add a new row and column corresponding to k, 

where the distance from k to any other leaf m can 
be computed as:

Dkm = (Dim + Djm – Dij)/2

Compress i and j into 
k, iterate algorithm for 
rest of tree
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Finding Neighboring Leaves
• To find neighboring leaves we simply select a 
pair of closest leaves. 
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Finding Neighboring Leaves
• To find neighboring leaves we simply select a 
pair of closest leaves. 

                         WRONG
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Finding Neighboring Leaves
• Closest leaves aren’t necessarily neighbors
• i and j are neighbors, but (dij = 13) > (djk = 12)

•   Finding a pair of neighboring leaves is 
   a nontrivial problem!
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Neighbor Joining Algorithm
• In 1987 Naruya Saitou and Masatoshi Nei 

developed a neighbor joining algorithm for 
phylogenetic tree reconstruction

• Finds a pair of leaves that are close to each 
other but far from other leaves: implicitly finds a 
pair of neighboring leaves

• Advantages: works well for additive and other non-
additive matrices, it does not have the flawed 
molecular clock assumption
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Degenerate Triples

• A degenerate triple is a set of three distinct 
elements 1≤i,j,k≤n where Dij + Djk = Dik

• Element j in a degenerate triple i,j,k lies on the 
evolutionary path from i to k (or  is  attached to  
this path by an edge of length 0).
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Looking for Degenerate Triples

• If distance matrix D has a degenerate triple 
i,j,k then j can be “removed” from D thus 
reducing the        size of the problem.

• If distance matrix D does not have a 
degenerate triple i,j,k, one can “create” a 
degenerative triple in D by shortening all 
hanging edges (in the tree).  
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Shortening Hanging Edges to 
Produce Degenerate Triples
• Shorten all “hanging” edges (edges that 

connect leaves) until a degenerate triple is 
found
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Finding Degenerate Triples
• If there is no degenerate triple, all hanging edges 

are reduced by the same amount δ, so that all pair-
wise distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves 
(when δ = length of shortest hanging edge), forming 
a degenerate triple i,j,k and reducing the size of the 
distance matrix D.

• The attachment point for j can be recovered in the 
reverse transformations by saving Dij for each 

collapsed leaf.
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Reconstructing Trees for Additive Distance Matrices
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AdditivePhylogeny Algorithm
1. AdditivePhylogeny(D)
2.    if D is a 2 x 2 matrix
3.       T = tree of a single edge of length D1,2
4.       return T
5.    if D is non-degenerate
6.       δ = trimming parameter of matrix D
7.       for all 1 ≤ i ≠ j ≤ n
8.          Dij = Dij - 2δ
9.    else
10.       δ = 0
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AdditivePhylogeny (cont’d)

1.    Find a triple i, j, k in D such that Dij + Djk = Dik
2.    x = Dij
3.    Remove jth row and jth column from D
4.    T = AdditivePhylogeny(D)
5.    Add a new vertex v  to T at distance x from i to k
6.    Add j back to T  by creating an edge (v,j) of length 0
7.    for every leaf l in T
8.       if distance from l  to v  in the tree ≠ Dl,j
9.          output “matrix is not additive”
10.          return
11.    Extend all “hanging” edges by length δ
12.    return T
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The Four Point Condition
• AdditivePhylogeny provides a way to check if 

distance matrix D is additive

• An even more efficient additivity check is 
the “four-point condition”

• Let 1 ≤ i,j,k,l ≤ n be four distinct leaves in a 
tree
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The Four Point Condition (cont’d)

Compute: 1. Dij + Dkl, 2. Dik + Djl, 3. Dil + Djk

1

2 3

2 and 3 represent 
the same 
number: the 
length of all 
edges + the 
middle edge (it is 
counted twice)

1 represents 
a smaller 
number: the 
length of all 
edges – the 
middle edge
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The Four Point Condition: Theorem

• The four point condition for  the quartet i,j,k,l  
is satisfied if two of these sums are the same, 
with the third sum smaller than these first two

• Theorem : An n x n matrix D is additive if and 
only if the four point condition holds for every 
quartet 1 ≤ i,j,k,l ≤ n
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Least Squares Distance Phylogeny 
Problem
• If the distance matrix D is NOT additive, then we look for a 

tree T that approximates D the best:

               Squared Error :   ∑i,j (dij(T) – Dij)2

• Squared Error is a measure of the quality of the fit between 
distance matrix and the tree: we want to minimize it.

• Least Squares Distance Phylogeny Problem: finding the 
best approximation tree T for a non-additive matrix D (NP-
hard).
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UPGMA: Unweighted Pair Group 
Method with Arithmetic Mean
• UPGMA is a clustering algorithm that:

• computes the distance between clusters 
using average pairwise distance

• assigns a height to every vertex in the tree, 
effectively assuming the presence of a 
molecular clock and dating every vertex
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UPGMA’s Weakness
• The algorithm produces an ultrametric tree : 

the distance from the root to any leaf is the 
same
• UPGMA assumes a constant molecular 

clock: all species represented by the 
leaves in the tree are assumed to 
accumulate mutations (and thus evolve) at 
the same rate.  This is a major pitfalls of 
UPGMA.
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UPGMA’s Weakness: Example

2

3

4
1

1 4 32

Correct tree
UPGMA
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Clustering in UPGMA
Given two disjoint clusters Ci, Cj of sequences,

                          1
          dij = ––––––––– S{p ÎCi, q ∈Cj}dpq

             |Ci| ´ |Cj|

Note that if Ck = Ci È Cj, then distance to 
another cluster Cl is:

                      dil |Ci| + djl |Cj|

               dkl = ––––––––––––––

                       |Ci| + |Cj|
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UPGMA Algorithm
Initialization:

Assign each xi to its own cluster Ci

Define one leaf per sequence, each at height 0

Iteration:

Find two clusters Ci and Cj such that dij is min

Let Ck = Ci È Cj

Add a vertex connecting Ci, Cj and place it at height dij /

2

Delete Ci and Cj

Termination:

When a single cluster remains



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

UPGMA Algorithm (cont’d)

1 4

3 2 5

1 4 2 3 5
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Alignment Matrix vs. Distance Matrix

Sequence a gene of length m 
nucleotides in n species to generate an…

  n x m alignment matrix

n x n distance 
matrix

CANNOT be 
transformed back 
into alignment 
matrix because 
information was 
lost on the forward 
transformation

Transform 
into…
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Character-Based Tree Reconstruction 

• Better technique:
• Character-based reconstruction algorithms 

use the n x m alignment matrix

   (n = # species, m = #characters) 

   directly instead of using distance matrix. 
• GOAL: determine what character strings at 

internal nodes would best explain the character 
strings for the n observed species
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Character-Based Tree Reconstruction 
(cont’d)
• Characters may be nucleotides, where A, G, 

C, T are states of this character.  Other 
characters may be the # of eyes or legs or 
the shape of a beak or a fin. 

• By setting the length of an edge in the tree to 
the Hamming distance, we may define the 
parsimony score of the tree as the sum of 
the lengths (weights) of the edges
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Parsimony Approach to Evolutionary 
Tree Reconstruction

• Applies Occam’s razor principle to identify 
the simplest explanation for the data

• Assumes observed character differences 
resulted from the fewest possible mutations

• Seeks the tree that yields lowest possible 
parsimony score - sum of cost of all 
mutations found in the tree
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Parsimony and Tree Reconstruction 
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Character-Based Tree Reconstruction 
(cont’d)



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Small Parsimony Problem
• Input: Tree T with each leaf labeled by an m-

character string.

• Output: Labeling of internal vertices of the 
tree T minimizing the parsimony score.

• We can assume that every leaf is labeled by 
a single character, because the characters in 
the string are independent.
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Weighted Small Parsimony Problem

• A more general version of Small Parsimony 
Problem

• Input includes a k * k scoring matrix describing 
the cost of transformation of each of k states 
into another one 

• For Small Parsimony problem, the scoring 
matrix is based on Hamming distance 

      dH(v, w) = 0 if v=w 

      dH(v, w) = 1 otherwise



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Scoring Matrices

 A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

 A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem
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Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

 A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

Small Parsimony Score:5
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Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

 A T G C

A 0 3 4 9

T 3 0 2 4

G 4 2 0 4

C 9 4 4 0

Weighted Parsimony Score: 22
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Weighted Small Parsimony 
Problem: Formulation

• Input: Tree T with each leaf labeled by 
elements of a k-letter alphabet and a k x k 
scoring matrix (dij)

• Output: Labeling of internal vertices of the 
tree T minimizing the weighted parsimony 
score
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Sankoff’s Algorithm
• Check children’s every 

vertex and determine 
the minimum between 
them

• An example
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Sankoff Algorithm: Dynamic 
Programming
• Calculate and keep track of a score for every 

possible label at each vertex
• st(v) = minimum parsimony score of the subtree 

rooted at vertex v if v has character t

• The score at each vertex is based on scores 
of its children:
• st(parent) = mini {si( left child )   + di, t} + 

                      minj   {sj( right child ) + dj, t}
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Sankoff Algorithm (cont.)
• Begin at leaves:

• If leaf has the character in question, score is 0
• Else, score is ¥
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + di, t} 

+ minj{sj(w) + dj, t}

sA(v) = mini{si(u) + di, 
A} + minj{sj(w) + dj, 
A}

 
si
(u)

di, 

A
su
m

A 0 0 0

T ¥ 3 ¥

G ¥ 4 ¥

C ¥ 9 ¥

 
si
(u)

di, 

A
su
m

A 0 0 0

T ¥ 3 ¥

G ¥ 4 ¥

C ¥ 9 ¥

sA(v) = 0

 
si
(u)

di, 

A
su
m

A    

T    

G    

C    
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + di, t} 

+ minj{sj(w) + dj, t}

sA(v) = mini{si(u) + di, 
A} + minj{sj(w) + dj, 
A}

 
sj
(u)

dj, 

A
su
m

A    

T    

G    

C    

 
sj
(u)

dj, 

A
su
m

A ¥ 0 ¥

T ¥ 3 ¥

G ¥ 4 ¥

C 0 9 9

 
sj
(u)

dj, 

A
su
m

A ¥ 0 ¥

T ¥ 3 ¥

G ¥ 4 ¥

C 0 9 9

+ 9 = 9
sA(v) = 0
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Sankoff Algorithm (cont.)

st(v) = mini {si(u) + di, t} 

+ minj{sj(w) + dj, t}

Repeat for T, G, and C
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Sankoff Algorithm (cont.)

Repeat for right subtree
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Sankoff Algorithm (cont.)

Repeat for root
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Sankoff Algorithm (cont.)

Smallest score at root is minimum weighted 
parsimony score In this case, 9 – 

so label with T
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Sankoff Algorithm: Traveling down 
the Tree
• The scores at the root vertex have been 

computed by going up the tree 
• After the scores at root vertex are computed 

the Sankoff algorithm moves down the tree 
and assign each vertex with optimal 
character.
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Sankoff Algorithm (cont.)

9 is derived from 7 + 2

So left child is T,

And right child is T
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Sankoff Algorithm (cont.)

And the tree is thus labeled…



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch’s Algorithm
• Solves Small Parsimony problem
• Dynamic programming in essence
• Assigns a set of letter to every vertex in the 

tree.
• If the two children’s sets of character overlap, 

it’s the common set of them
• If not, it’s the combined set of them.
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Fitch’s Algorithm (cont’d)

a

a

a

a

a

a

c

c

 {t,a}

c

t

t

t

 {t,a}

 a

 {a,c}

 {a,c}
a

a

a

aa

tc

An example:



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Fitch Algorithm
1) Assign a set of possible letters to every 

vertex, traversing the tree from leaves to root
• Each node’s set is the combination of its 

children’s sets (leaves contain their label)
• E.g. if the node we are looking at has a left child 

labeled {A, C} and a right child labeled {A, T}, the 
node will be given the set {A, C, T}
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Fitch Algorithm (cont.)
2) Assign labels to each vertex, traversing the 

tree from root to leaves
• Assign root arbitrarily from its set of letters
• For all other vertices, if its parent’s label is in 

its set of letters, assign it its parent’s label
• Else, choose an arbitrary letter from its set as 

its label
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Fitch Algorithm (cont.)
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Fitch vs. Sankoff
• Both have an O(nk) runtime

• Are they actually different?

• Let’s compare …
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Fitch

As seen previously:
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Comparison of Fitch and Sankoff
• As seen earlier, the scoring matrix for the Fitch 

algorithm is merely:

• So let’s do the same problem using Sankoff 
algorithm and this scoring matrix

 A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0
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Sankoff
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Sankoff vs. Fitch
• The Sankoff algorithm gives the same set of 

optimal labels as the Fitch algorithm
• For Sankoff algorithm, character t is optimal for 

vertex v if st(v) = min1<i<ksi(v)
• Denote the set of optimal letters at vertex  v as S(v)

• If S(left child) and S(right child) overlap, S(parent) is the 
intersection

• Else it’s the union of S(left child) and S(right child) 
• This is also the Fitch recurrence

• The two algorithms are identical
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Large Parsimony Problem
• Input: An n x m matrix M describing n 

species, each represented by an m-character 
string

• Output: A tree T with n leaves labeled by the 
n rows of matrix M, and a labeling of the 
internal vertices such that the parsimony 
score is minimized over all possible trees and 
all possible labelings of internal vertices
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Large Parsimony Problem (cont.)
• Possible search space is huge, especially as 

n increases
• (2n – 3)!! possible rooted trees
• (2n – 5)!! possible unrooted trees

• Problem is NP-complete
• Exhaustive search only possible w/ small n(< 10)

• Hence, branch and bound or heuristics used
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Nearest Neighbor Interchange
A Greedy Algorithm
• A Branch Swapping algorithm
• Only evaluates a subset of all possible trees
• Defines a neighbor of a tree as one 

reachable by a nearest neighbor interchange
• A rearrangement of the four subtrees defined by 

one internal edge
• Only three different rearrangements per edge
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Nearest Neighbor Interchange 
(cont.)
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Nearest Neighbor Interchange 
(cont.)
• Start with an arbitrary tree and check its 

neighbors
• Move to a neighbor if it provides the best 

improvement in parsimony score
• No way of knowing if the result is the most 

parsimonious tree
• Could be stuck in local optimum
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Nearest Neighbor Interchange
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Subtree Pruning and Regrafting
Another Branch Swapping Algorithm

http://artedi.ebc.uu.se/course/BioInfo-10p-2001/Phylogeny/Phylogeny-TreeSearch/SPR.gif
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Tree Bisection and Reconnection 
Another Branch Swapping Algorithm

 Most extensive 
swapping routine
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Homoplasy
• Given:

• 1: CAGCAGCAG
• 2: CAGCAGCAG
• 3: CAGCAGCAGCAG
• 4: CAGCAGCAG
• 5: CAGCAGCAG
• 6: CAGCAGCAG
• 7: CAGCAGCAGCAG

• Most would group 1, 2, 4, 5, and 6 as having 
evolved from a common ancestor, with a single 
mutation leading to the presence of 3 and 7
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Homoplasy
• But what if this was the real tree?
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Homoplasy

• 6 evolved separately from 4 and 5, but 
parsimony would group 4, 5, and 6 together 
as having evolved from a common ancestor

• Homoplasy: Independent (or parallel) 
evolution of same/similar characters

• Parsimony results minimize homoplasy, so 
if homoplasy is common, parsimony may 
give wrong results
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Contradicting Characters
• An evolutionary tree is more likely to be 

correct when it is supported by multiple 
characters, as seen below

Lizard

Frog

Human

Dog

MAMMALIA
Hair
Single bone in lower jaw
Lactation
etc.

  Note: In this case, tails are homoplastic
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Problems with Parsimony
• Important to keep in mind that reliance on 

purely one method for phylogenetic analysis 
provides incomplete picture

• When different methods (parsimony, 
distance-based, etc.) all give same result, 
more likely that the result is correct
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How Many Times Evolution 
Invented Wings?

• Whiting, et. al. (2003) looked at winged and 
wingless stick insects
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Reinventing Wings
• Previous studies had shown winged à 

wingless transitions
• Wingless  winged transition much more 

complicated (need to develop many new 
biochemical pathways)

• Used multiple tree reconstruction 
techniques, all of which required re-
evolution of wings
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Most Parsimonious Evolutionary Tree 
of Winged and Wingless Insects

•  The evolutionary 
tree is based on 
both                  
DNA sequences 
and presence/
absence of wings

•  Most parsimonious 
reconstruction gave a 
wingless ancestor
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Will Wingless Insects Fly Again? 
• Since the most parsimonious reconstructions 

all required the re-invention of wings, it is 
most likely that wing developmental 
pathways are conserved in wingless stick 
insects
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Phylogenetic Analysis of HIV Virus
• Lafayette, Louisiana, 1994 – A woman 

claimed her ex-lover (who was a physician) 
injected her with HIV+ blood

• Records show the physician had drawn blood 
from an HIV+ patient that day

• But how to prove the blood from that HIV+ 
patient ended up in the woman?
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HIV Transmission
• HIV has a high mutation rate, which can be 

used to trace paths of transmission
• Two people who got the virus from two 

different people will have very different HIV 
sequences

• Three different tree reconstruction methods 
(including parsimony) were used to track 
changes in two genes in HIV (gp120 and RT)
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HIV Transmission
• Took multiple samples from the patient, the woman, 

and controls (non-related HIV+ people) 
• In every reconstruction, the woman’s sequences 

were found to be evolved from the patient’s 
sequences, indicating a close relationship between 
the two

• Nesting of the victim’s sequences within  the patient 
sequence indicated the direction of transmission 
was from patient to victim

• This was the first time phylogenetic analysis was 
used in a court case as evidence (Metzker, et. al., 
2002)
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Evolutionary Tree Leads to 
Conviction
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Alu Repeats 
• Alu repeats are most common repeats in human 

genome (about 300 bp long)
• About 1 million Alu elements make up 10% of the 

human genome
• They are retrotransposons

• they don’t code for protein but copy themselves into RNA 
and then back to DNA via reverse transcriptase

• Alu elements have been called “selfish” because their 
only function seems to be to make more copies of 
themselves
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What Makes Alu Elements 
Important?
• Alu elements began to replicate 60 million 

years ago. Their evolution can be used as a 
fossil record of primate and human history

• Alu insertions are sometimes disruptive and 
can result in genetic disorders

• Alu mediated recombination can cause 
cancer

• Alu insertions can be used to determine 
genetic distances between human 
populations and human migratory history
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Diversity of Alu Elements
• Alu Diversity on a scale from 0 to 1

• Africans 0.3487  origin of modern humans
• E. Asians 0.3104 
• Europeans 0.2973 
• Indians               0.3159 
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Minimum Spanning Trees
• The first algorithm for finding a MST 

was developed in 1926 by Otakar 
Borůvka. Its purpose was to 
minimize the cost of electrical 
coverage in Bohemia.

• The Problem
• Connect all of the cities but use the 

least amount of electrical wire 
possible. This reduces the cost.

• We will see how building a 
MST can be used to study 
evolution of Alu repeats
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What is a Minimum Spanning Tree?
• A Minimum 

Spanning Tree 
of a graph 

     --connect all 
the vertices in 
the graph and 

     --minimizes the  
sum of edges 
in the tree



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How can we find a MST?

• Prim algorithm (greedy)
• Start from a tree T with a single vertex
• Add the shortest edge connecting a vertex in 

T to a vertex not in T, growing the tree T
• This is repeated until every vertex is in T

• Prim algorithm can be implemented in O(m logm) 
time (m is the number of edges).
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Prim’s Algorithm Example
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Why Prim Algorithm Constructs 
Minimum Spanning Tree?  
• Proof:

• This proof applies to a graph with distinct 
edges

• Let e be any edge that Prim algorithm 
chose to connect two sets of nodes. 
Suppose that Prim’s algorithm is flawed 
and it is cheaper to connect the two sets 
of nodes via some other edge f

• Notice that since Prim algorithm selected 
edge e we know that cost(e) < cost(f)

• By connecting the two sets via edge f, the 
cost of connecting the two vertices has 
gone up by exactly cost(f) – cost(e)

• The contradiction is that edge e does not 
belong in the MST yet the MST can’t be 
formed without using edge e
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An Alu Element
• SINEs are flanked by short direct repeat 

sequences and are transcribed by RNA 
Polymerase III
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Alu Subfamilies
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The Biological Story: Alu Evolution
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Alu Evolution



 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Alu Evolution: The Master Alu Theory
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Alu Evolution: Alu Master Theory 
Proven Wrong
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Minimum Spanning Tree As An 
Evolutionary Tree
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Alu Evolution: Minimum Spanning 
Tree vs. Phylogenetic Tree

• A timeline of Alu subfamily evolution would give 
useful information
• Problem - building a traditional phylogenetic tree 

with Alu subfamilies will not describe Alu evolution 
accurately

• Why can’t a meaningful typical phylogenetic tree 
of Alu subfamilies be constructed?
• When constructing a typical phylogenetic tree, the 

input is made up of leaf nodes, but no internal 
nodes

• Alu subfamilies may be either internal or external 
nodes of the evolutionary tree because Alu 
subfamilies that created new Alu subfamilies are 
themselves still present in the genome. Traditional 
phylogenetic tree reconstruction methods are not 
applicable since they don’t allow for the inclusion 
of such internal nodes
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Constructing MST for Alu Evolution
• Building an evolutionary tree using an MST will allow for the inclusion 

of internal nodes
• Define the length between two subfamilies as the Hamming distance 

between their sequences
• Root the subfamily with highest average divergence from its consensus 

sequence (the oldest subfamily), as the root
• It takes ~4 million years for 1% of sequence divergence between 

subfamilies to emerge, this allows for the creation of a timeline of Alu 
evolution to be created

• Why an MST is useful as an evolutionary tree in this case
• The less the Hamming distance (edge weight) between two subfamilies, 

the more likely that they are directly related
• An MST represents a way for Alu subfamilies to have evolved minimizing 

the sum of all the edge weights (total Hamming distance between all Alu 
subfamilies) which makes it the most parsimonious way and thus the most 
likely way for the evolution of the subfamilies to have occurred.
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MST As An Evolutionary Tree
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Sources
• http://www.math.tau.ac.il/~rshamir/ge/02/scribes/lec01.pdf
• http://bioinformatics.oupjournals.org/cgi/screenpdf/20/3/340.pdf 
• http://www.absoluteastronomy.com/encyclopedia/M/Mi/

Minimum_spanning_tree.htm
• Serafim Batzoglou (UPGMA slides) http://www.stanford.edu/class/

cs262/Slides
• Watkins, W.S., Rogers A.R., Ostler C.T., Wooding, S., Bamshad M. J., 

Brassington A.E., Carroll M.L., Nguyen S.V., Walker J.A., Prasas, R., 
Reddy P.G., Das P.K., Batzer M.A., Jorde, L.B.: Genetic Variation 
Among World Populations: Inferences From 100 Alu Insertion 
Polymorphisms


