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Phylogenetic reconstruction is a fast-growing field that is enriched by different statistical approaches and by
findings and applications in a broad range of biological areas. Fundamental to these are the mathematical
models used to describe the patterns of DNA base substitution and amino acid replacement. These may become
some of the basic models for comparative genome research. We discuss these models, including the analysis of
observed DNA base and amino acid mutation patterns, the concept of site heterogeneity, and the incorporation
of structural biology data, all of which have become particularly important in recent years. We also describe the
use of such models in phylogenetic reconstruction and statistical methods for the comparison of different

models.

PCR has deeply transformed and boosted phyloge-
netic studies. At the same time, the statistical analy-
sis of evolutionary relationships among species has
recently revealed important biotechnological uses.
For example, the understanding of viral quasi-
species variation allows us to trace routes of infec-
tious disease transmission. The analysis of the host-
pathogen relationships in terms of mutual genetic
variation can led to a deeper insight into drug de-
sign for medical and agricultural purposes, and
structural biologists are becoming interested in the
phylogeny of sets of homologous proteins belong-
ing to different organisms because these reflect all
the different variants already experienced in nature
and can reveal structural and functional constraints.

How does a geneticist reconstruct molecular
phylogenetic relationships? The answer is to pro-
ceed hierarchically. The first step comprises se-
quence selection and alignment, to determine site-
by-site homologies and to detect DNA or amino acid
differences. The second step is to build a math-
ematical model describing the evolution in time of
the sequences. A model can be built empirically,
using properties calculated through comparisons of
observed sequences, or parametrically, using chemi-
cal or biological properties of DNA and amino acids,
as for instance hydrophobicity values of each amino
acid. Such models permit estimation of the genetic
distance between two homologous sequences, mea-
sured by the expected number of nucleotide substi-
tutions per site that have occurred on the evolution-
ary lineages between them and their most recent
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common ancestor. Such distances may be repre-
sented as branch lengths in a phylogenetic tree; the
extant sequences form the tips of the tree, whereas
the ancestral sequences form the internal nodes and
are generally not known.

The third step involves applying an appropriate
statistical method to find the tree topology and
branch lengths that best describe the sequences’
phylogenetic relationships. The fourth step consists
of the interpretation of results. We focus primarily
on the second step. The statistical comparison of
mathematical models of sequence evolution is in
itself interesting, as the rejection of a simpler model
in favor of one that incorporates additional hypoth-
esized biological factors implies the real significance
of those factors. Equally importantly, there is a
growing body of evidence that phylogenetic infer-
ences are more reliable the more accurate the model
of sequence evolution, and this is another motiva-
tion for finding and using the best available models.

We proceed in this review by introducing some
of the DNA base substitution and amino acid re-
placement models most widely used, along with
some of their most important current develop-
ments. Maximum likelihood inference using these
models is briefly introduced as one statistical
method used to draw evolutionary inferences and as
a fundamental part of the procedure for comparing
the models. We conclude with speculations on the
future course of molecular evolutionary analyses.

Models of Molecular Evolution
Introduction

In 1965, Zuckerkandl and Pauling (1965) proposed
the theory of a molecular clock, that is, that the
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rate of molecular evolution is approximately
constant over time for all the proteins in all lin-
eages. According to this theory, any time of di-
vergence between genes, proteins, or lineages can
be dated simply by measuring the number of
changes between sequences. Soon afterwards, in
1969, Jukes and Cantor (1969) proposed a stochas-
tic model for DNA substitution in which all nu-
cleotide substitutions occur at an equal rate, and
when a nucleotide is substituted, any one of the
other nucleotides is equally likely to be its replace-
ment.

It is not surprising, however, that the molecular
clock hypothesis and the Jukes and Cantor substi-
tution model have both been found to be overly
simple. Mutation rates seem to vary both among
and within genomes, being affected by many factors
such as chromosomal position (Sharp et al. 1989),
G + C content (Wolfe 1991), nearest neighbor bases
(Blake et al. 1992), and different efficiency of the
repair systems between the lagging and the leading
DNA strands during replication and transcription
(Veaute and Fuchs 1993). Thus, any molecular clock
seems to tick at different rates for different DNA
positions. Furthermore, it is known that misincor-
poration errors during DNA duplication or repair are
facilitated if a base is replaced by a similar one, and
thus, transitions occur more frequently than trans-
versions (Brown and Simpson 1982): often twice as
frequently, but the ratio can be much higher. Dif-
ferences in mutation rate tend to decrease TA and
CG dimers and to produce an excess of CT and TG
dimers (Ohno 1988). Sueoka introduced a theoreti-
cal model to explain the large variations in G + C
content shown by the DNA sequences belonging to
different species; he proposed a directional muta-
tional pressure attributable to misincorporation er-
rors during DNA repair or replication as a cause of
such a variation (Sueoka 1992). The genomes of
higher vertebrates and plants are mosaics of large
regions (isochores) with remarkably different G + C
content. Moreover, warm-blooded vertebrates seem
to have higher mutation rates than cold-blooded
vertebrates.

It is difficult to implement, in a model that aims
to be general, all the different mutation rules and
patterns that we detect in the genetic material be-
longing to different species. Instead, the models
that have been used have incorporated only the
simplest rules or have been based on empirical ob-
servation with little understanding of the underly-
ing biology. We start our discussion of these models
with a description of an assumption they all share,
the Markov property.
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Markov Models

Consider a stochastic model for DNA or amino acid
sequence evolution. We assume independence of
evolution at different sequence sites and thus can
consider sites one by one. At any single site, the
model works with probabilities P;(T) that base i will
have changed to base j after a time T. The subscripts
i and j take the values 1,...,4 to represent the nucleo-
tides A, T, C, G for DNA sequences and 1,...,20 for
amino acid sequences.

Given a stochastic variable X(f) describing
the evolution through time t of a site in one se-
quence, the Markov assumption asserts that
P;(T) = Pr[X(s + T) = j|X(s) = i] is independent of
s = 0. Informally, this means that subsequent to
any time s it does not matter how the process
reached state i by time s (the process is ““memory-
less””), and the future course of evolution depends
only on i.

The probabilities of transition from one base to
another, P;(T), can be written as a matrix P(T), and
then we can write

P(T + dT) = P(T)(I + QdT)

where dT represents a small time, and I is the iden-
tity matrix. The matrix Q is known as the instanta-
neous rate matrix and has off-diagonal entries Q;;
equal to the rates of replacement of i by j. (The di-
agonal entries, Q;;, are defined by a mathematical
requirement that the row sums are all zero.) This
equation is solved to give

(TQ? (TQ)®

P(T):eTQ:I+TQ+2—!+T+

Spectral decomposition (also termed diagonaliza-
tion) of Q allows us to calculate the matrix P(7):

P(T)=U - diag{e™”, ..., &7} - U!

where the matrix U contains the eigenvectors of Q,
the A; are the eigenvalues of Q and diag{} denotes
the diagonal matrix of the elements contained in
the braces. The components Py(T) can be written as

Pi,'(T) = ;Cijke)\kT

where the sum is over k = 1,...,4 for DNA sequences
and over k = 1,...,20 for amino acids; ¢;; is a function
of U and U™ '. Note that T and Q are confounded;
TQ = (T/y)(yQ) for any vy # O (e.g., half the time at
twice the rate has the same result). Therefore, abso-
lute times T typically cannot be used, and in prac-
tice, time is scaled to units of expected substitutions
per site.



A Markov process can have three important
properties: homogeneity, stationarity, and revers-
ibility. Homogeneity means that the rate matrix is
independent of time, that is, that the patterns of
nucleotide substitution or amino acid replacement
remain the same in different parts of the tree. A
homogeneous process has an equilibrium distribu-
tion that is also the limiting distribution when time
approaches infinity. Stationarity means that the
process is at that equilibrium, that is, nucleotide fre-
quencies have remained more or less the same dur-
ing the course of evolution. Reversibility means that
Py (T) = mP;(T) for all i, j, and T where m; are the
frequencies of occurrence for each base. A conse-
quence of reversibility is that the process of se-
quence evolution is theoretically indistinguishable
from the same process watched in reverse.

Models in widespread use typically assume ho-
mogeneity, yet this is rarely likely to be fully appro-
priate, for example, because of the dependence of
mutation on local sequence context. Stationarity is
not a consequence of a Markov model but of its
application; this too is generally assumed in phylo-
genetics, although when base frequencies are quite
different in different species this assumption is
clearly violated. Genomes show large differences in
base compositions. For instance, the genome of the
bacterium Micrococcus luteus has 74% G + C content,
whereas the genome of the bacterium Mycoplasma
capricolum has only 25% G + C content. Reversibil-
ity too is generally assumed, with little justification
other than that numerical calculations are simpli-
fied considerably. Assumptions such as those of ho-
mogeneity, stationarity, and reversibility are typical
of the approximations that have to be made to ren-
der our knowledge of molecular biology into a
mathematically tractable form.

DNA Substitution Models

The model of Jukes and Cantor (1969) described
above is defined by Q; =« for all i, j=1,...,4; i #j,
meaning that each base is substituted by any other
at equal rate o. A consequence of this model is that
the base frequencies (m;) are all assumed equal to
0.25. Kimura (1980) proposed a two-parameter
model that considered the difference in transition
and transversion rates. The instantaneous rate ma-
trix can be written as

B B «a

s - oo

Q=g o B
« B B

For the sake of clarity, because the row sums of the
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matrix are constrained to equal zero, we have used
dots on the diagonal. In this and all subsequent ma-
trices, the order of the bases for columns and rows
are A, T, C, G, and the (i,j) entry represents Q;;, the
rate (i — j) at which a base i is replaced by a base j.
After Kimura, several authors proposed models with
increasing numbers of parameters. Blaisdell (1985)
introduced an asymmetry for some reciprocal
changes: i - j has a different substitution rate from
j o i

Yy v o«

B d a o

Q=13 B 3
B v v

Unlike Kimura’s two-parameter model, the four-
parameter model proposed by Blaisdell does not
have the property of reversibility. Further related
contributions based respectively on four- and six-
parameter models were made by Takahata and
Kimura (1981) and Gojobori et al. (1982).

Felsenstein (1981) proposed a model in which
the rate of substitution to a nucleotide depends only
on the equilibrium frequency of that nucleotide.
This approach adds three free parameters to the
Jukes and Cantor (1969) model:

T WTe WTg
T ’ KWTe W
Wiy pmr o Wi
RTa WT PTe

Q:

Usually the nucleotide equilibrium frequencies can
be estimated by simply analyzing base composition
in the DNA sequences under study.

Hasegawa and coworkers (1985) implemented
transition/transversion bias in Felsenstein’s model,
effectively combining it with the model of Kimura
(1980). The rate matrix is

By Bme amg
BTa - ame Prg
By amp - S
am, Pmp Bre

Q:

Thus, with respect to Hasegawa’s model, Kimura’s
model corresponds to the case m, =mp=7c=mg=
0.25; Felsenstein’s model corresponds to the case of
B =a; and when both these simplifications are
made, we obtain the model of Jukes and Cantor.
Felsenstein (1995) and Tamura and Nei (1993) have
also devised models very similar to that of Hasegawa
et al. (1985).

The most general model can have at most 12
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independent parameters; insisting on reversibility
reduces this to 9. Such a model was considered by
Tavaré (1986) and later by Yang (1994a) and can be
parameterized as follows:

amy Brc ymg
oty . pTe 0T

Bma pmr : TG
YT, OWp T

Q:

The models described above are parametric, in the
sense that they are defined in terms of parameters
(m;, o, B, etc.) inspired by our understanding of bi-
ology. Empirical models of nucleotide substitution
have also been studied. These models are derived
from the analysis of inferred substitutions in refer-
ence sequences, perhaps the sequences under cur-
rent study or from databases. Advantages of this ap-
proach can be the better description of the evolu-
tion of the sequences under study, if a suitable
reference set is used, particularly if this reference set
is large. Disadvantages can be inaccuracy owing to
an inappropriate reference set and a lack of a
broader biological interpretability of purely empiri-
cal findings. These models have received less atten-
tion and use than parametric models. Examples of
this approach are found in Lanave et al. (1984),
Zharkikh (1994) and Arvestad and Bruno (1997).

All the models described so far operate at the
level of individual nucleotides. In an attempt to in-
troduce greater biological reality, through knowl-
edge of the genetic code and the consequent effect
of nucleotide substitutions in protein-coding se-
quences on the encoded amino acid sequences,
Goldman and Yang (1994a) described a codon mu-
tation model. They considered the 61 sense codons
i consisting of nucleotides i,i,i;. The rate matrix Q
consisted of elements Q;; describing the rate of
change of codon i = i;i,i; to j = j,j,j3 (i # j) depend-
ing on the number and type of differences between
i; and j,, i, and j,, and i; and j; as follows:

0 if 2 or 3 of the pairs iy, j
are different
Q m—rie_d““i,““/ V' if one pair differs by a
i transversion
pre “amaa’V if one pair differs by a
transition

where daa‘_,,m/_ is the distance between the amino acid
coded by the codon i (aa;) and the amino acid coded
by the codon j (aa;) as calculated by Grantham
(1974) on the basis of the physicochemical proper-
ties of the amino acids. This model takes account of
codon frequencies (through the m)), transition/
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transversion bias (through k), differences in amino
acid properties between different codons (daa‘_,aa/_),
and levels of sequence variability (V). A similar
model was described by Muse and Gaut (1994). Re-
cent work by Yang and Nielsen (1998) and Pedersen
et al. (1998) has developed and improved the Gold-
man and Yang (1994a) model.

Amino Acid Replacement Models

Base substitutions are more easily fixed in noncod-
ing regions than in coding regions. In coding re-
gions, natural selection determines the fixation of,
for example, amino acid replacements or trinucleo-
tide slippage, insertions, and deletions. Gene dupli-
cation events can also give rise to amino acid re-
placements, whereby one copy of a duplicated gene
can accumulate a large number of mutations and
acquire new substrate specialization. In addition,
for distantly related sequences, the “filtering’’ of
DNA sequences by the genetic code can give amino
acid sequences with more obviously interpreted
similarities, and amino acid sequences are less prone
to have wide-ranging differences in composition
(e.g., G + Crichness) than are some DNA sequences.
For these reasons, it can be valuable to look at mod-
els of amino acid replacement.

In contrast to DNA substitution models, amino
acid replacement models have concentrated on the
empirical approach. Dayhoff and coworkers (1972,
1978) developed a model of protein evolution that
resulted in the development of a set of widely used
replacement matrices. In the Dayhoff approach, re-
placement rates are derived from alignments of pro-
tein sequences that are at least 85% identical; this
constraint ensures that the likelihood of a particular
mutation (e.g., L - V) being the result of a set of
successive mutations (e.g.,, L - x - y » V) is low.
An implicit instantaneous rate matrix was esti-
mated, and replacement probability matrices P(T)
were generated for different values of T. One of the
main uses of the Dayhoff matrices has been in da-
tabase search methods where, for example, the ma-
trices P(0.5), P(1), and P(2.5) (known as the PAMS50,
PAM100, and PAM250 matrices) are used to assess
the significance of proposed matches between tar-
get and database sequences. However, the implicit
rate matrix has been used for phylogenetic applica-
tions.

Recently, Jones et al. (1992) and Gonnet et al.
(1992) have used much the same methodology as
Dayhoff but with modern databases. The Jones et al.
model has been implemented for phylogenetic
analyses with some success. Jones et al. (1994) have
also calculated an amino acid replacement matrix



specifically for membrane spanning segments. This
matrix has remarkably different values from the
Dayhoff matrices, which are known to be biased to-
ward water-soluble globular proteins.

Adachi and Hasegawa (1995, 1996) have imple-
mented a general reversible Markov model of amino
acid replacement that uses a matrix derived from
the inferred replacements in mitochondrial proteins
of 20 vertebrate species. The investigators show that
this model performs better than others when deal-
ing with mitochondrial protein phylogeny.

A simple, nonempirical model of amino acid
replacement was proposed by Nei (1987). This
model implements a Poisson distribution and gives
accurate estimates of the number of amino acid re-
placements when species are closely related.

A different approach was used by Henikoff and
Henikoff (1992). They used local, ungapped align-
ments of distantly related sequences to derive the
BLOSUM series of matrices. Matrices of this series
are identified by a number after the matrix (e.g.,
BLOSUMS0), which refers to the minimum percent-
age identity of the blocks of multiple aligned amino
acids used to construct the matrix. It is noteworthy
that these matrices are directly calculated without
extrapolations, and are analogous to transition
probability matrices P(T) for different values of T,
estimated without reference to any rate matrix Q.
The BLOSUM matrices often perform better than
PAM matrices for local similarity searches but have
not been widely used in phylogenetics.

Rate Heterogeneity

One of the most important recent advances in the
reconstruction of evolutionary trees is the consider-
ation of heterogeneity of evolutionary rates among
sites. The biological basis of heterogeneous muta-
tion rate among sites probably reflects the influence
of the nearest neighbors on mutation rate. Stacking
energies along the molecule, helix configuration (A,
B, Z-DNA, triple helix), supercoiling, and DNA in-
trinsic curvature (that is sequence dependent)
change the solvent accessibility and thus base reac-
tivity. The fixation of any mutation depends on
DNA and protein structure/function selection pres-
sures. Protein coding and noncoding DNA regions
show remarkably different mutation rates; more-
over, each codon position is subject to different se-
lection pressures. The incorporation of heterogene-
ity of evolutionary rates among sites has led to a
new set of models that generally provides a better fit
to observed data, and phylogeny reconstruction has
improved (e.g., Yang 1994b, 1996a; Yang et al.
1994).

MODELS OF MOLECULAR EVOLUTION

Some authors have considered models in which
a fraction of sites change at one rate, whereas the
other sites are invariable (e.g., Hasegawa et al. 1985).
More popular and successful have been models
based on a continuous distribution of rates. Nei and
Gojobori (1986), Yang (1993) and Tamura and Nei
(1993) have modelled site rates using a Gamma dis-
tribution. A continuous distribution in which every
site may have a different rate seems to be the most
biologically plausible model. Yang, however, went
on to show that the ‘“discrete Gamma model,” with
as few as four categories of evolutionary rates cho-
sen to approximate a Gamma distribution, performs
very well (Yang 1994b). It is also considerably more
practical computationally.

The success of the Gamma distribution seems to
be in its flexibility. With this model, we assume that
the rate of substitution for each site is drawn from a
Gamma distribution with shape parameter o. If « is
<1, the distribution implies that there is a relatively
large amount of rate variation, with many sites
evolving very slowly but some sites evolving at a
high rate. For values of a>1, the shape of the distri-
bution changes qualitatively, with less variation
and most sites having roughly similar rates. It ap-
pears that the range of distributional shapes avail-
able under the permitted values of 0 < a < « is well
able to describe the variation found in DNA se-
quences.

Yang (1995) and Felsenstein and Churchill
(1996) have implemented methods in which several
categories of evolutionary rates can be defined. Both
methods use hidden Markov model (HMM) tech-
niques (see Rabiner 1989; Eddy 1996 and references
therein) to describe the organization of areas of un-
equal and unknown rates at different sites along se-
quences. All possible assignments of evolutionary
rate category at each site contributes to the phylo-
genetic analysis of sequences, and algorithms are
also available to infer the most probable rate cat-
egory for each site. These methods are not yet
widely used. They are, however, among the first to
consider the organization of sites along sequences
instead of assuming that all sites evolve according to
identical processes and independently of one an-
other and so deserve more consideration in the fu-
ture.

Combined Models

Cao et al. (1994) and Yang (1996b) have considered
the problem of building models to analyze the se-
quences of multiple genes from the same set of spe-
cies. Different sequences, such as protein coding re-
gions, noncoding regions and tRNA genes, or sim-
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ply different regions of the same gene, may show
heterogeneity in their evolutionary processes. Pa-
rameters that might exhibit such heterogeneity are
nucleotide frequencies, transition/transversion rate
biases, and the extent of rate variation across sites.
Combining heterogeneous data this way, using
models appropriate to each part of the combined
data, can give more powerful analyses. For example,
Yang (1996b) considered tests of the molecular
clock hypothesis. He illustrated a case in which the
hypothesis of rate constancy among lineages could
not be rejected when considering a number of genes
singularly, but for which the combined set of se-
quences could indicate significant differences in
substitution rates among species.

The Impact of Structural Biology

Recent phylogenetic analyses of DNA and protein
sequences have been improved by incorporating
structural and functional properties into inferential
models. At the same time, phylogenetic relation-
ships can also suggest additional clues to RNA and
protein structure. A first approach is to consider in-
formation only indirectly related to structure, such
as DNA G + C content (Churchill 1989) or physico-
chemical properties of amino acids, for instance, hy-
drophobicity, charge, and size (Naylor and Brown
1997). Churchill incorporated the local composi-
tion heterogeneity of DNA sequences as states of a
hidden Markov chain. Local G + C content influ-
ences the structure and curvature of a DNA mol-
ecule, and Churchill’s model can be regarded as the
first to incorporate structural information.
Rzhetsky (19995) introduced a model to estimate
base substitution in ribosomal RNA genes and to
infer phylogenetic relationships. Phylogenetic
analyses of ribosomal RNA (rRNA) sequences have
given important results about ancient events be-
cause of their high levels of conservation over ex-
tremely long evolutionary times. Some authors
have, however, suggested that ribosomal RNA trees
may sometimes be misleading, especially when
G + C content differs widely among lineages. Rzhet-
sky’s model takes into account rRNA secondary
structure elements, namely, stem and loop regions.
Although it is very difficult to infer rRNA tertiary
structure, fairly reliable predictions of stable folded
secondary structures can be made. Stem and loop
regions have different rates of base substitution:
stems are double-stranded regions, and loops are
single-strand RNA, and thus, selection pressures on
them are different. Rzhetsky (1995) modelled stem
regions using 16 discrete states (representing all the
possible pairings) and loops using a 4-state rate ma-
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trix. For stems, the 240 off-diagonal elements of the
rate substitution matrix each take one of four dif-
ferent values, depending on the type of substituting
pairs; for loops, the simple Jukes and Cantor model
is used.

Other important contributions are those of
Vawter and Brown (1993), Schoniger and von Hae-
seler (1994), and Tillier and Collins (1998). Addi-
tional constraints and difficulties yet to be modelled
for RNA secondary structure include G - U pairings
and loop size; additionally, in tRNA, 10% of the
nucleotides are rare variants. The step from second-
ary to tertiary structure will be yet more difficult to
implement in evolutionary models.

Goldman, Thorne, and coworkers have intro-
duced an evolutionary model that combines protein
secondary structure and amino acid replacement
(Goldman et al. 1996, 1998; Thorne et al. 1996; Lio
et al. 1998). Their approach is related to that of Day-
hoff and coworkers but considers different catego-
ries of structural environment, for example, a-helix,
B-sheet, turn, and loop, with each category further
classified by whether it is exposed to solvent or is
buried in the protein core. Whereas the Dayhoff ap-
proach simply considers the ‘““average’” environ-
ment for each amino acid, Goldman, Thorne, and
coworkers inferred a Markov chain model of amino
acid replacement for each of the different catego-
ries. Underlying (but unobserved) transitions be-
tween the different categories along a protein-
coding sequence are described with a (hidden)
Markov chain. The resulting HMM allows the simul-
taneous inference of phylogeny and protein struc-
ture, using information about each to improve in-
tference of the other.

Alignment, Phylogeny, and Evolution

The presence of multiple deletions, insertions, and
repeats can make the alignment procedure a deli-
cate passage in phylogeny building. Most phyloge-
netic studies are based on a fixed alignment, derived
in advance of phylogenetic analysis and subse-
quently assumed to be correct. It is beyond the
scope of this review to discuss these alignment tech-
niques. With respect to evolution, however, we refer
readers to the work of Thorne et al. (1991, 1992) and
Mitchison and Durbin (1995) who have devised
evolutionary models that simultaneously account
for nucleotide or amino acid replacements and for
processes of insertion and deletion.

Is it Time for Whole Genome—Based Phylogeny?

At the time when few genes had been sequenced,
incongruences between biological sequence-based



phylogeny and morphology-based phylogeny fed
the strong faith that the sequencing of larger
amounts of genetic material could result in the com-
plete banishment of doubts and incongruences.
This has turned out not to be completely true. Cao
et al. (1994) have shown that phylogeny based on
different mitochondrial proteins can suggest wrong
trees. Nowadays, the availability of entire genome
or chromosome sequences points to the open ques-
tions of the choice of “representative’ sets of genes
and how phylogenies, based on different sets of
genes with different evolutionary rate, can be com-
bined to draw a single evolutionary landscape. Yang
(1996b) has suggested the use of combined models
for different genes; Cao et al. (1994) have shown
that chaining the amino acid sequences of different
proteins can lead to better (but not always com-
pletely satisfactory) solutions.

Pitfalls in phylogeny building can also depend
on the presence of large families of orthologous and
paralogous genes. The complete sequencing of ge-
nomes can lead to a better knowledge of paralogy
events and thus to more robust phylogeny analyses.
We feel it is still necessary to improve our ‘“‘small
scale” understanding through models such as those
reviewed here in order to describe adequately ge-
nome-sized effects.

Applications
Introduction

The main aim of this review is to describe models
currently used to describe sequence evolution. It is
beyond our scope to include any comprehensive
discussion of all their possible applications for phy-
logenetic estimation. Instead, we will concentrate
on some of their applications through maximum
likelihood (ML) methods, as we feel these methods
provide the best framework that allows both phylo-
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genetic estimation and the testing and comparison
of alternative models that permit greater under-
standing of the processes of evolution in addition to
its reconstruction.

Part of the appeal of ML methods lies in their
robust mathematical and statistical basis and their
ability to use all the available data. Recent studies
based on simulations have led to the conclusions
that ML methods are often more accurate in infer-
ring the correct tree than other methods (Kuhner
and Felsenstein 1994; Huelsenbeck 1995). The dis-
advantage of this method is the need for powerful
computing resources. The number of possible un-
rooted bifurcating trees for n sequences is
2n - 3)!II =1 X 3 X...x (2n — 3) (Edwards and
Cavalli-Sforza 1964; Felsenstein 1978); as n in-
creases, this grows as fast as n!l! X 2". With n=10
sequences the number of candidate trees exceeds
2 X 105, and the task of determining which is the
ML tree can be likened to finding a one-half-gram
needle in a 10°-kg haystack. Various heuristic meth-
ods have been proposed to help overcome this dif-
ficulty (e.g., see Strimmer and von Haeseler 1996;
Swofford et al. 1996), and there are a number of
practical computer programs available. Some of
those that we find most useful, or most interesting,
are listed in Table 1.

Maximum Likelihood Estimation

The likelihood of a hypothesis is defined as the
probability of the data given that hypothesis. In
phylogeny reconstruction, the evolutionary tree (its
shape and branch lengths) and any other free pa-
rameters of the evolutionary model represent these
hypotheses. Different hypotheses have different
likelihood values. ML evaluates competing hypoth-
eses (trees and parameters) by selecting those with
the highest likelihood, as it is these that render the
observed data most plausible. Likelihood calcula-

Described in the Text

Table 1. A Selection of Software Packages Useful for the Molecular Sequence Analyses

Software WWW address Reference
MOLPHY  anonymous FTP at sunmh.ism.ac.jp/pub/molphy Adachi and Hasegawa (1995)
PAML http://abacus.gene.ucl.ac.uk/ziheng/paml.html Yang (1997a,b)

PASSML http://ng-dec1.gen.cam.ac.uk/hmm/Passml.html Lio et al. (1998)

PAUP* http://chee.unm.edu/paup Swofford (1998)

PHYLIP http ://evolution.genetics.washington.edu/phylip.html Felsenstein (1995)

PUZZLE http://www.zi.biologie.uni-muenchen.de/Cstrimmer/puzzle.html  Strimmer and

von Haeseler (1996)
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tions for evolutionary trees are not straightforward,
typically requiring computations that allow for all
the possible unobserved sequences at the internal
(ancestral) nodes of hypothesized trees. These cal-
culations have, however, been possible in practice
since the work of Felsenstein (1981). As well as es-
timating trees and parameters by those giving the
highest likelihood scores, the likelihood values
themselves are used in model comparisons.

Comparison of Models

Statistical tests for phylogenetic trees allow the esti-
mation of the reliability of inferred trees. For ex-
ample, the bootstrap technique introduced to phy-
logenetics by Felsenstein (1985) measures how well
a group is reflected by all the data in a sequence
alignment, given the data analysis method used.

More recently, tests and comparisons of the
models used to describe sequence evolution have
become available (Goldman 1993). Yang et al.
(1994) show how two models that differ in only
one parameter can be compared, by examining
the estimated value and variance of that parame-
ter. More generally, comparisons of different evolu-
tionary models require consideration of their dif-
ferent numbers of parameters. One solution that
has been proposed is the AIC (Akaike informa-
tion criterion) test: a model that minimizes
AIC = [-2 - log(likelihood)] + [2 -(number of free
parameters)] is considered to be the most appropri-
ate (Akaike 1974; Kishino et al. 1990). The AIC has
not been widely used in recent years, as likelihood
ratio tests (LRTs) have increased in usage.

LRTs are a class of powerful statistical tests that
compare the ML values of competing hypotheses.
Statistical theory states that under ideal conditions
these tests will have easily found properties based
on x* statistics. LRTs have found various applica-
tions in phylogenetics. Yang et al. (1995) imple-
mented an LRT [first proposed by Felsenstein
(1981)] of the molecular clock hypothesis and suc-
cessfully used the predicted x? distribution. Some
other tests of closely related models are also found
to be equally straightforward. However, the x> dis-
tribution is not always useful, as found by Goldman
(1993) when implementing an LRT proposed by Na-
vidi et al. (1991) and Goldman (1993) of the overall
goodness of fit of models of sequence evolution.
Goldman (1993) has described a Monte Carlo simu-
lation approach that can be used instead in such
cases.

Results of Model Comparisons

Yang (1996¢, 1997a,b) has recently reported a large
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comparison of models using a set of 895-bp mtDNA
sequences from human, chimpanzee, gorilla, oran-
gutan, and gibbon. These sequences have been ana-
lyzed previously by many other authors and can be
regarded as a useful benchmark of the goodness of
fit of nucleotide substitution models (Brown and
Simpson 1982).

Simple models such as those of Jukes and Can-
tor (1969) and Kimura (1980), even when recover-
ing the correct tree topology, can result in severe
underestimation of branch lengths. At the same
time, simple models can discriminate better be-
tween candidate trees (Goldman and Yang 1994b).
In this respect and also with respect to components
of other, more complex models (below), it remains
unclear how best to accomodate the trade-off be-
tween incorporating into models enough complex-
ity (or biological reality) to capture evolutionary in-
formation accurately and avoiding overparameter-
ization that can lead to a loss of discriminatory
power. It is our belief, however, that under biologi-
cally realistic conditions models that are amongst
the most complex currently available will probably
be most successful.

Yang (1994a) showed that for large data sets the
general reversible model performs better than other
models and the use of nonreversible models is not
worthwhile. Goldman and Yang (1994a) showed
that their codon-based model of protein-coding
DNA sequences could fit data better than models
based on individual nucleotides.

Yang et al. (1994) have compared several mod-
els with and without the assumption of a Gamma
distribution of rates over sites using different sets of
sequences. They found that the incorporation of
heterogeneity of rates over sites into the model of
Hasegawa et al. (1985) performed better than the
other models tested, in terms of fit of model to data
and also the accuracy of estimated trees. Heteroge-
neity in rate variation over nucleotide sites can be
the most important parameter determining the
goodness of fit of a model (Yang et al. 1994); in
particular, the incorporation of such a parameter
helps avoid the severe underestimation of long
branch lengths that can occur with other methods.
At the same time, misclassification of rates at sites
can affect likelihoods and thus tree topology esti-
mation (Yang et al. 1994).

Goldman, Thorne, and coworkers used simula-
tion techniques to evaluate the worth of incorpo-
rating structural information into amino acid re-
placement models, relative to other models that do
not consider such information (e.g., Goldman et al.
1998). They showed that the incorporation of sol-



vent accessibility at each site results in a conspicu-
ous improvement of the likelihood and that the in-
corporation of secondary structure environment
(e.g., a-helix, B-sheet, turn, loop) at each site results
in a further significant improvement. Incorporating
knowledge of typical length distributions of the sec-
ondary structure categories was not always signifi-
cant (Goldman et al. 1998). This result leaves open
the question of whether currently manageable data
sets contain enough information to tell us more
about evolutionary replacement processes or
whether a secondary structure-based model with
fewer parameters is equally able to catch all the
available information.

Perspectives and Conclusion

Phylogenetic studies are probably going to be in-
creasingly based on structural biological data and
on statistical formalization. This reflects the impor-
tance of improved models and of extracting the
maximum information from sequence data. In ad-
dition, the understanding of correlations or discrep-
ancies between molecular and morphological evo-
lution is a new and challenging frontier (e.g., Pagel
1994; Omland 1997), although one in which
progress is perhaps slower.

Studies incorporating structural information are
quite fruitful at the moment. As well as the work
described above, additional complexity is gradually
being introduced. For example, three-dimensional
structure is being considered, in methods that look
for correlations in sequence evolution (D.D. Pol-
lock, W.R. Taylor, and N. Goldman, in prep.). Cor-
relations between sites distant in the linear se-
quence of a protein will often reflect effects on parts
of the protein that are very close in the folded
(three-dimensional) structure. As such analyses be-
come more specialized, however, there is some con-
cern over whether there will ever be enough data to
find these correlations reliably.

Regarding statistical formalization, current re-
search is successfully generalizing the statistical test-
ing of phylogenetic hypotheses. Huelsenbeck and
Rannala (1997) have recently discussed likelihood
ratio testing in phylogenetics from a practical and
biologist-oriented point of view. They have stressed
that both the use of the x? distribution and Monte
Carlo simulations have become indispensable tools
for biologists dealing with competing phylogenetic
hypotheses.

With our improving ability to handle phyloge-
netic questions statistically has come an increased
interest in experimental design in phylogenetics.

MODELS OF MOLECULAR EVOLUTION

Much interest has concentrated on the estimation
of large phylogenies [see the recent special issue of
Systematic Biology 47(1), 1998]. In addition, new
methods have been described that allow more gen-
eral questions (e.g., How valuable is it to add more
species to a tree with a certain topology? Is it going
to make the tree topology more robust if I sequence
additional DNA regions? Which gene region should
I sequence to get reliable phylogeny estimates?) to
be answered (Goldman 1998; Graybeal 1998; Yang
1998).

Another recent methodological advance has
been the introduction of modern computational
statistical methods into phylogenetics. This has in-
cluded renewed interest in Bayesian statistics and
the use of sampling techniques such as Markov
chain Monte Carlo (see Gilks et al. 1996 and papers
therein), the realistic application of both of which
have become possible only with the advent of mod-
ern computers. Bayesian approaches were used pre-
viously in linkage analysis but did not initially elicit
particular attention, perhaps because of biologists’
frequency-oriented background and attitude. In
phylogenetics, however, there has been more inter-
est. Yang and Rannala (1997) have recently used
Bayesian methods for estimating phylogenetic trees.
They used birth-death process models of ancestral
speciation and extinction to specify the prior distri-
bution of phylogenies and a Markov chain Monte
Carlo method to estimate posterior probabilities of
trees. Similar techniques were used by Mau et al.
(1998) to generate confidence sets of phylogenetic
trees.

In conclusion, we are delighted to report that
the modelling of processes of sequence evolution is
a thriving field of research. It has two immediate
and important benefits: the improved understand-
ing of the biological processes that shape evolution
at the molecular level and the improved ability to
infer from sequence data the story of the evolution
of life on earth.
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