Forensic Sciences

Fatchiyah
Dept. of Biology, FMIPA, UB
- Fingerprints
- Palm prints
- Footwear and tire impressions
- Other – ears, lips, etc.
- Blood alcohol, urinalysis, poisons
- Blood, urine, organs, tissue, vitreous humor
Crime Scene Photography

- Accurate and complete documentation of scene and evidence
- Establish spatial locations, conditions, scale
Comparison of inks, paper, printers, copiers, and handwriting
- Physics of flight, trigonometry used to determine origin point of blood
- Size and orientation of spatters can determine method by which stains are created
Fiber analysis

- Fibers have distinct color, diameter, shape, and chemical composition
- Microscopic and chemical analysis to compare
- Direct comparison of known samples and unknowns from crime
- Striations or firing pin impressions
- Also used to do tool-mark comparisons (screwdrivers, etc.)
- Search for chemical signs of accelerants (gasoline, etc.)
- Test burn scenarios
Explosives

- Search for unique chemical traces or bomb-making materials
- Look for evidence from makers of bomb (DNA, fingerprints)
Others

- Serology (body fluids)
- Drug analysis (marijuana, cocaine, meth)
- Anthropology
- Pathology (medical examiner)
Are you just a number?
Methods of identification

<table>
<thead>
<tr>
<th>Used Since?</th>
<th>Identification Method</th>
<th>Accuracy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>Measurement of height (Quételet’s method)</td>
<td>1 in 4</td>
</tr>
<tr>
<td></td>
<td>Comparison of Pubic hair</td>
<td>1 in 800</td>
</tr>
<tr>
<td>Late 1800’s Early 1900’s</td>
<td>Comparison of Scalp hair</td>
<td>1 in 4500</td>
</tr>
<tr>
<td>Late 1800’s early 1900’s</td>
<td>Anthropometry (Bertillon’s method)</td>
<td>1 in 268 million</td>
</tr>
<tr>
<td></td>
<td>Forensic odontology Teeth bite marks</td>
<td>1 in 2.5 billion</td>
</tr>
<tr>
<td>Evidence in Early Egypt – documented forensic use 1800’s -1900’s</td>
<td>Dactylography (Fingerprints)</td>
<td>?</td>
</tr>
<tr>
<td>Late 1900’s</td>
<td>DNA Fingerprinting</td>
<td>1 in 2 x 10^{22}</td>
</tr>
<tr>
<td>Late 1900’s early 2000’s</td>
<td>Facial recognition</td>
<td>?</td>
</tr>
</tbody>
</table>

http://lifeloom.com/I2Aggrawal.htm and http://www.crimezzz.net/forensic_history/index.htm
Brief History of Forensic DNA Typing

- 1980 - Ray White describes first polymorphic RFLP marker
- 1985 - Alec Jeffreys discovers multi-locus VNTR probes
- 1985 - first paper on PCR
- 1988 - FBI starts DNA casework
- 1991 - first STR paper
- 1995 - FSS starts UK DNA database
- 1998 - FBI launches CODIS database
Identification vs. Expression

Unique identifying characteristics

DNA
RNA
Protein

What regions of DNA would you expect to use for identification?
- Regions from genes expressing proteins?
- Other regions?
- Why
What are some of the DNA technologies used in forensic investigations?

- Restriction Fragment Length Polymorphism (RFLP)
- PCR Analysis
- STR Analysis
- Mitochondrial DNA Analysis
- Y-Chromosome Analysis
Repetitive DNA in the Human Genome

- Less than 2% codes for Proteins
- 50% of the genome contains repeated sequences
 - No apparent function
 - Recombination?
 - Formation of new genes?

- Types of repeated DNA
 - Tandemly repeated
 - Telomeres
 - Satellite (VNTRs)
 - Minisatellite (STRs)
 - Interspersed repetitive DNA
 - SINES (Alu sequences)
 - LINES
 - Transposable elements
DNA in the Cell

Target Region for PCR
What are STRs?

- **Short Tandem Repeats (STR)** are repetitive sequences:
 - Tetranucleotide: AAAG AAAG AAAG AAAG
 - Trinucleotide: CTT CTT CTT CTT CTT
 - Dinucleotide: AG AG AG AG AG AG

- **Tetranucleotides** are favored in human identity
 - Good balance of “ease of interpretation” and “variability found in nature”
D18S51 “D18”
Chromosomal location FL 18q21.3

The repeat sequence is aaga – this particular individual has 14 repeats
The **locus** is “where it’s at”

Locus—the physical position of an STR and its associated flanking sequence

Both chromosomes of a homologous pair contain this locus

The allele contained on either chromosome can be the same or different lengths (**homozygous** or **heterozygous**)

![Image of chromosomes with labeled loci]
Chromosome Spread showing the positions of the amplified loci in PowerPlex® 16 System amplifies 16 loci.
Short Tandem Repeats (STRs)

- Repeat region is variable (polymorphic)
 - Each variant is referred to as an allele
- Flanking region is constant

KEY: Alleles are distinguished by length

Homozygote = both alleles are the same length
Heterozygote = alleles differ and can be resolved from one another
DNA Amplification with PCR

1. Starting DNA Template
2. Separate strands (denature)
3. Add primers (anneal)
4. Make copies (extend primers)

Forward primer
5’ 3’

Reverse primer
3’ 5’
Exponential Amplification with PCR

In 32 cycles at 100% efficiency, 1.07 billion copies of amplicon are made.

http://www.cstl.nist.gov/div831/strbase/
Multiplex PCR

- 16 Loci Are Copied at Once
- Sensitivities to levels less than 0.5 ng of DNA
- Ability to Handle Mixtures and Degraded Samples
- Different Fluorescent Dyes Used to Distinguish STR Alleles with Overlapping Size Ranges
Separating and “Seeing” STR’s

- **Electrophoresis**
 - Separates amplification products based on size

- **Fluorescent detection**
 - Amplification products have a fluorescent “label” attached to the primer
 - Label is seen through excitation via a laser and corresponding emission captured with a camera
Current Forensic STR Multiplexes

PowerPlex 16

- D3
- TH01
- D21
- D18
- Penta E
- D5
- D13
- D7
- D16
- CSF
- Penta D
- A
- vWA
- D8
- TPOX
- FGA
A sizing standard is used in all samples and allelic ladders. The known standard is used to determine the size of the allelic ladders and the unknown samples.
Allelic Ladder
Allele Calls
Discrimination power through multiplexing

Allele possibilities

Hypothetical likelihood of occurrence

1 locus: 1 in 18
2 loci: 1 in 360
3 loci: 1 in 18000
4 loci: 1 in 792000

9 loci: ~1 in 10^{10}
16 loci: ~1 in 10^{17}

Current World Pop: ~6.3 billion
DATA ANALYSIS

- Controls
 - Negative control devoid of amplification products
 - Compare positive control 9947a with locus-specific ladder
- STR Allelic Ladders
 - Comparison with samples allows precise assignment of alleles
- Fluorescent Ladder (CXR)
 - Internal Size Standard
Human Identity Testing
Applications

- Forensic cases: matching suspect with evidence
- Paternity testing: identifying father
- Convicted felon DNA databases
- Missing persons investigations
- Mass disasters -- putting pieces back together
- Historical investigations
- Military DNA “dog tag”
Complete STR Profile
DNA from Small Stains/challenging samples

- 0.1µl blood stain on denim
- 1/5 of eluted material used for amplification
DNA Use in Forensic Cases

- Most are rape cases (>2 out of 3)
- Looking for matches between evidence, victim, and suspect
- Must compare DNA profiles

Challenges

- Mixtures must be resolved if present
- DNA is often degraded
- Inhibitors to PCR and sample contamination are often present
Steps in DNA Sample Processing

Biology
- DNA Extraction
- DNA Quantitation
- PCR Amplification of Multiple STR markers

Technology
- Separation and Detection of PCR Products (STR Alleles)
- Sample Genotype Determination

Genetics
- Comparison of Sample Genotype to Other Sample Results
- Generation of Case Report with Probability of Random Match

If match occurs, comparison of DNA profile to population databases

Sample Obtained from Crime Scene or Paternity Investigation
Sources of Biological Evidence

- Blood
- Semen
- Saliva
- Urine
- Hair
- Teeth
- Bone
- Tissue
DNA extraction

- Samples can have extremely small amounts of DNA
- Available Technologies for DNA Isolation
 - Phenol:Chloroform Extraction (Homebrew)
 - Chelex (ReadyAmp™)
 - FTA® Paper
 - Qiagen
 - DNA IQ™ System
 - DNA IQ™ Reference Sample Kit for Maxwell® 16
DNA Quantitation

- Forensic labs in the US are required by law to quantitate the amount of Human DNA in crime scene samples
- How might this be done?
Regulation of Labs

- Forensic
 - FBI
 - Standards for Combined DNA Index System (CODIS) labs
 - http://www.fbi.gov/hq/lab/codis/index1.htm
 - The Scientific Working Group for DNA Analysis Methods (SWGDAM) publishes guidelines

- Paternity
 - American Association of Blood Banks (AABB)
 - http://www.aabb.org
- Analysis based on population statistics and data
- Probability that the evidence matches the suspect

Allele Frequency Data

<table>
<thead>
<tr>
<th>Allele</th>
<th>Caucasian-American</th>
<th>African-American</th>
<th>Hispanic-American</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>0.065</td>
<td>0.087</td>
<td>0.225</td>
</tr>
<tr>
<td>4</td>
<td>0.041</td>
<td>0.075</td>
<td>0.113</td>
</tr>
<tr>
<td>5</td>
<td>0.206</td>
<td>0.342</td>
<td>0.227</td>
</tr>
<tr>
<td>6</td>
<td>0.287</td>
<td>0.131</td>
<td>0.164</td>
</tr>
<tr>
<td>7</td>
<td>0.329</td>
<td>0.195</td>
<td>0.227</td>
</tr>
<tr>
<td>8</td>
<td>0.017</td>
<td>0.067</td>
<td>0.214</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>0.000</td>
<td>0.000</td>
<td>0.007</td>
</tr>
<tr>
<td>12</td>
<td>0.002</td>
<td>0.011</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>0.005</td>
<td>0.032</td>
<td>0.005</td>
</tr>
<tr>
<td>14</td>
<td>0.017</td>
<td>0.021</td>
<td>0.005</td>
</tr>
<tr>
<td>15</td>
<td>0.010</td>
<td>0.014</td>
<td>0.007</td>
</tr>
<tr>
<td>16</td>
<td>0.000</td>
<td>0.002</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Allele Frequencies

- Homozygotes: 0.237, 0.225, 0.203
- Heterozygotes: 0.763, 0.775, 0.797
- Total Samples: 207, 218, 222

Forensic Statistics

- Matching Probability (genetic): 0.068, 0.061, 0.07
- Expressed as 1 in ... 10.2, 10.4, 14.3
- Matching Probability (sibling): 0.068, 0.061, 0.07
- Expressed as 1 in ... 10.2, 10.4, 14.3
- Power of Discrimination: 0.433, 0.554, 0.584
- Paternity Statistics
 - Power of Exclusion: 0.533, 0.554, 0.584
 - Typical Paternity Index: 2.14, 2.22, 2.47
References and resources

- http://www.cstl.nist.gov/biotech/strbase/intro.htm (some information in this presentation is from this ppt)
- http://appliedbiosystems.com Supplier of Human identification systems
COLLECTION OF TOUCH DNA FROM EVIDENCE

When:
- At the Crime Scene by Law Enforcement
 (e.g. door knobs, counters, windows)
- Forensic Laboratory by analyst
 (if other testing is needed)

Where:
- Areas of contact (e.g. grips, slide, trigger, magazine, cartridge cases; fired vs. unfired)
- Any touched object…
- (but be cautious regarding objects accessible to the general public)
DNA Profiles from Weapons and the DNA Database

- The weapon must be associated with a crime - seized vs. surrendered.

- The weapon cannot be seized from the suspect’s person or property.

- Cannot use a “possession” sample as an alternate way to get a suspect’s known profile into the DNA Database.
Proper collection of “touch” DNA evidence:

Collection protocol:
- Wear latex gloves (change frequently)
- Disposable face masks/supplies
- Clean instruments with bleach and alcohol

How:
- Swab using sterile swab/solution
Collection of Touch DNA Evidence

1. Contamination is a significant possibility.

2. Impact of contamination is false exclusion of suspect or artificial mixtures.

How to minimize:
Gloves, Masks, Disposable Instruments, procedure (no talking over evidence!!!)

Identification of Contamination:
Know the DNA profiles of:
First Responders, Major Crime Squads, and Laboratory Personnel
Forensic DNA Testing
How do we go from this . . .

. . . To this?
Evidence Collection

With increasingly sensitive DNA tests, proper collection protocols are more critical.

Standard measures: Gloves, disposable supplies, etc.
consider masks—especially for low yield samples.

Clean any non-disposable instruments with bleach and alcohol.

Elimination swabs from people at the scene answers standard defense question.

Collect evidence to avoid/minimize mixtures especially with certain samples.
DNA analysis using STRs and the DNA Database

Individuals tested → Blood sample → DNA is extracted → DNA quantitation → PCR amplify → DNA profiles
DNA in the Cell

- Target Region for PCR:
 - Chromosome
 - Cell nucleus
 - Double stranded DNA molecule

- Polymorphic Region

Target Region for PCR
DNA Amplification with the Polymerase Chain Reaction (PCR)

Starting DNA Template

Separate strands (denature)

Add primers (anneal)

Make copies (extend primers)

Forward primer

Reverse primer
In 32 cycles at 100% efficiency, 1.07 billion copies of targeted DNA region are created.
Short Tandem Repeats (STRs)

Repeat number varies between alleles. PCR primers bind to flanking regions that are constant.

Homozygote = Two copies of same allele.
Heterozygote = Two different alleles.
Multiplex PCR

- 15 STR Markers Can Be Amplified in 1 reaction.
- Sensitivity = less than 250 pg of DNA.
- Ability to Handle Mixtures and Degraded Samples.
- Different Fluorescent Dyes Used to Distinguish STR Alleles with Overlapping Size Ranges.
Example of Forensic STR Multiplex Kit

AmpFISTR® Identifiler™

Kit available from PE Biosystems (Foster City, CA)

15 STRs amplified along with sex-typing marker amelogenin in a single PCR reaction.

LIZ-internal lane standard
Fluorescent STR Analysis

- Fluorescent dye tags on the primers

- Visualize emitted light with a digital camera.
- Collect and analyze data with computer.
Capillary Electrophoresis

A. Capillary Array
B. Polymer Delivery Pump
C. Pump block
D. Buffer reservoirs
E. Detection Block (camera)
Size Separation of DNA
(Dog in a Thicket Analogy)
Forensic DNA Analysis
“Aha! The murderer's footprints! 'Course, we all leave tracks like this.”

Hardy-Weinberg:
\[p = f(A) \]
\[q = f(a) \]
\[p^2 + 2pq + q^2 = 1 \]
Forensic DNA Analysis

Evidentiary DNA profile(s) are generated from samples submitted to Forensic Lab.

Known profile(s) of suspect/victim (blood or buccal) are compared to DNA profiles from instant case.

Evidentiary profiles entered into CODIS database. Suspect’s profile is not entered into CODIS database.
DNA MIXTURES

• Common in Forensic DNA testing. Sexual Assault samples-intimate swabs, clothing.

• Mixtures of victim & suspect(s).
 - How many people?
 - Previous consensual partners?
 - Contamination: scene, collection, lab?

• Mixture not always detected at all tests.
DNA Profile Detection

Profile A Detected

Profile B Detected

Factors:
1. Quantity of DNA
2. Quality of DNA
Mixture Detection?

Factors:
1. Quantity
2. Quality
3. Ratio
Stochastic Fluctuation

- **Stochastic** = chance.
- Result of PCR founder effect and chance allele sampling.

If you amplify small amounts of DNA (LCN PCR), can see stochastic effects.
The Meaning of a DNA Match?

1. Person A is the source of the DNA profile from the evidence.

2. The identical twin of person A is the source of the DNA profile.

 or

3. Another person who coincidently has the same profile as person A is the source of the DNA profile from the evidence.

 = the random match probability
DNA Conclusions

1. Included – source or contributor
2. Excluded – source or contributor
3. CBE – source or contributor
4. Inconclusive
5. Insufficient data
Y-DNA Typing
Y Chromosome Testing

- Paternal inheritance.
- Detects male component of a mixture.
- Less discriminating than standard DNA testing. Statistics = counting method (linkage).
- Important for detecting the semen donor in sexual assault mixtures.
When to Use Y-STR Testing

- Sexual assaults by vasectomized or azoospermic males (no sperm left behind for differential extraction)

- Extending length of time after assault for recovery of perpetrator’s DNA profile (greater than 48 hours)

- Male-female mixtures

- Other bodily fluid mixtures (blood-blood, skin-saliva)

- Gang rape situation to include or exclude potential contributors

- When you want to double the amount of DNA for the PCR Reaction.
Y-STRs

“detects male component of a mixture”
Y-STRs

Y Profile Detected

X:Y = 30:1
Disadvantages of the Y-Chromosome

- Loci are not independent of one another and therefore rare random match probabilities cannot be generated with the product rule; must use haplotypes (combination of alleles observed at all tested loci)

- Paternal lineages possess the same Y-STR haplotype (barring mutation) and thus fathers, sons, brothers, uncles, and paternal cousins cannot be distinguished from one another

- Not as informative as autosomal STR results
 - More like addition \((10 + 10 + 10 = 30)\) than multiplication \((10 \times 10 \times 10 = 1,000)\)
Forensic Advantages of Y-STRs

- **Male-specific amplification** extends range of cases accessible to obtaining probative DNA results (e.g., fingernail scrapings, sexual assault without sperm)

- **Technical simplicity due to single allele profile**: can potentially recover results with lower levels of male perpetrator DNA because there is not a concern about heterozygote allele loss via stochastic PCR amplification; number of male contributors can be determined

- **Courts have already widely accepted STR typing**, instrumentation, and software for analysis (Y-STR markers just have different PCR primers)

- **Acceptance of statistical reports using the counting method** due to previous experience with mtDNA

- **Double the Genomic DNA** within the PCR Amplification reaction.
A Haplotype

- Although 17 loci are typed
- They are linked and are treated as one “super” locus
- A haplotype essentially is an allele
- The more alleles at a locus, generally the lower the effect of substructure on statistical calculations
Y-STRs can permit simplification of male DNA identification in sexual assault cases

Forensic DNA Statistics

\[p + 1.96 \sqrt{\frac{(p)(1-p)}{N}} \]

\[p^2 + 2pq + q^2 = 1 \]

\[1 - \alpha^{1/N} \]

AA + 2AB + 2AC + BB + 2BC + CC = 1

P = .5 \times .5 \times .5 \times .5 \times .5 = 1/32
STR Allele Frequencies

Locus: TH01

- Caucasians (N=427)
- Blacks (N=414)
- Hispanics (N=414)

The Meaning of a DNA Match?

1. Person A is the source of the DNA profile from the evidence.

2. The identical twin of person A is the source of the DNA profile.

 or

3. Another person who coincidentally has the same profile as person A is the source of the DNA profile from the evidence.

 = the random match probability
Random Match Probability

Is not:

Defense Fallacy.

A) Therefore, everyone else with the same genotype has an equal chance of being guilty.

B) Therefore, every possible genotype in a mixture has an equal chance of having committed the crime.
Random Match Probability

Is not:

Prosecutor’s Fallacy.

A) There is only a 1 in 100 million chance that the DNA profile came from someone else.

B) There is only a 1 in 100 million chance that the defendant is not guilty.
RMP is not:

1. The probability that someone else is guilty.
2. The probability that someone else left the DNA.
3. The probability that the defendant is not guilty.