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An integrated encyclopedia of DNA
elements in the human genome

The ENCODE Project Consortium#*

The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is
unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription,
transcription factor association, chromatin structure and histone modification. These data enabled us to assign
biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many
discovered candidate regulatory elements are physically associated with one another and with expressed genes,
providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical
correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation.
Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an
expansive resource of functional annotations for biomedical research.

The human genome sequence provides the
underlying code for human biology. Despite
intensive study, especially in identifying
protein-coding genes, our understanding of the
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95% of the genome lies within 8 kilobases (kb)
of a DNA-protein interaction (as assayed by
bound ChIP-seq motifs or DNase I footprints),
and 99% is within 1.7 kb of at least one of the

genome is far from complete, particularly with
regard to non-coding RNAs, alternatively spliced transcripts and reg-
ulatory sequences. Systematic analyses of transcripts and regulatory
information are essential for the identification of genes and regulatory
regions, and are an important resource for the study of human biology
and disease. Such analyses can also provide comprehensive views of the
organization and variability of genes and regulatory information across
cellular contexts, species and individuals.

The Encyclopedia of DNA Elements (ENCODE) project aims to
delineate all functional elements encoded in the human genome'™>.
Operationally, we define a functional element as a discrete genome
segment that encodes a defined product (for example, protein or
non-coding RNA) or displays a reproducible biochemical signature
(for example, protein binding, or a specific chromatin structure).
Comparative genomic studies suggest that 3-8% of bases are under
purifying (negative) selection*® and therefore may be functional,
although other analyses have suggested much higher estimates® .
In a pilot phase covering 1% of the genome, the ENCODE project
annotated 60% of mammalian evolutionarily constrained bases, but
also identified many additional putative functional elements without
evidence of constraint’. The advent of more powerful DNA sequencing
technologies now enables whole-genome and more precise analyses
with a broad repertoire of functional assays.

Here we describe the production and initial analysis of 1,640 data
sets designed to annotate functional elements in the entire human
genome. We integrate results from diverse experiments within cell types,
related experiments involving 147 different cell types, and all ENCODE
data with other resources, such as candidate regions from genome-wide
association studies (GWAS) and evolutionarily constrained regions.
Together, these efforts reveal important features about the organization
and function of the human genome, summarized below.

o The vast majority (80.4%) of the human genome participates in at
least one biochemical RNA- and/or chromatin-associated event in at
least one cell type. Much of the genome lies close to a regulatory event:

biochemical events measured by ENCODE.

¢ Primate-specific elements as well as elements without detectable
mammalian constraint show, in aggregate, evidence of negative selec-
tion; thus, some of them are expected to be functional.

o Classifying the genome into seven chromatin states indicates an initial
set of 399,124 regions with enhancer-like features and 70,292 regions
with promoter-like features, as well as hundreds of thousands of qui-
escent regions. High-resolution analyses further subdivide the genome
into thousands of narrow states with distinct functional properties.

o It is possible to correlate quantitatively RNA sequence production
and processing with both chromatin marks and transcription factor
binding at promoters, indicating that promoter functionality can
explain most of the variation in RNA expression.

e Many non-coding variants in individual genome sequences lie in
ENCODE-annotated functional regions; this number is at least as
large as those that lie in protein-coding genes.

o Single nucleotide polymorphisms (SNPs) associated with disease by
GWAS are enriched within non-coding functional elements, with a
majority residing in or near ENCODE-defined regions that are out-
side of protein-coding genes. In many cases, the disease phenotypes
can be associated with a specific cell type or transcription factor.

ENCODE data production and initial analyses

Since 2007, ENCODE has developed methods and performed a large
number of sequence-based studies to map functional elements across
the human genome®. The elements mapped (and approaches used)
include RNA transcribed regions (RNA-seq, CAGE, RNA-PET and
manual annotation), protein-coding regions (mass spectrometry),
transcription-factor-binding sites (ChIP-seq and DNase-seq),
chromatin structure (DNase-seq, FAIRE-seq, histone ChIP-seq and
MNase-seq), and DNA methylation sites (RRBS assay) (Box 1 lists
methods and abbreviations; Supplementary Table 1, section P, details
production statistics)’. To compare and integrate results across the
different laboratories, data production efforts focused on two selected

"Lists of participants and their affiliations appear at the end of the paper.
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BOX |
ENCODE abbreviations

RNA-seq. Isolation of RNA sequences, often with different purification
techniques to isolate different fractions of RNA followed by high-
throughput sequencing.

CAGE. Capture of the methylated cap at the 5’ end of RNA, followed by
high-throughput sequencing of a small tag adjacent to the

5" methylated caps. 5’ methylated caps are formed at the initiation of
transcription, although other mechanisms also methylate 5’ ends of
RNA.

RNA-PET. Simultaneous capture of RNAs with both a 5" methyl cap
and a poly(A) tail, which is indicative of a full-length RNA. This is then
followed by sequencing a short tag from each end by high-throughput
sequencing.

ChlIP-seq. Chromatin immunoprecipitation followed by sequencing.
Specific regions of crosslinked chromatin, which is genomic DNA in
complex with its bound proteins, are selected by usingan antibody toa
specific epitope. The enriched sample is then subjected to high-
throughput sequencing to determine the regions in the genome most
often bound by the protein to which the antibody was directed. Most
often used are antibodies to any chromatin-associated epitope,
including transcription factors, chromatin binding proteins and
specific chemical modifications on histone proteins.

DNase-seq. Adaption of established regulatory sequence assay to
modern techniques. The DNase | enzyme will preferentially cut live
chromatin preparations at sites where nearby there are specific (hon-
histone) proteins. The resulting cut points are then sequenced using
high-throughput sequencing to determine those sites ‘hypersensitive’
to DNase |, corresponding to open chromatin.

FAIRE-seq. Formaldehyde assisted isolation of regulatory elements.
FAIRE isolates nucleosome-depleted genomic regions by exploiting
the difference in crosslinking efficiency between nucleosomes (high)
and sequence-specific regulatory factors (low). FAIRE consists of
crosslinking, phenol extraction, and sequencing the DNA fragments in
the aqueous phase.

RRBS. Reduced representation bisulphite sequencing. Bisulphite
treatment of DNA sequence converts unmethylated cytosines to
uracil. To focus the assay and save costs, specific restriction enzymes
that cutaround CpG dinucleotides can reduce the genome to a portion
specifically enriched in CpGs. This enriched sample is then sequenced
to determine the methylation status of individual cytosines
quantitatively.

Tier 1. Tier 1 cell types were the highest-priority set and comprised
three widely studied cell lines: K562 erythroleukaemia cells;
GM12878, a B-lymphoblastoid cell line that is also part of the 1000
Genomes project (http://1000genomes.org)®®; and the H1 embryonic
stem cell (H1 hESC) line.

Tier 2. The second-priority set of cell types in the ENCODE project
which included Hela-S3 cervical carcinoma cells, HepG2
hepatoblastoma cells and primary (non-transformed) human
umbilical vein endothelial cells (HUVECS).

Tier 3. Any other ENCODE cell types not in tier 1 or tier 2.

sets of cell lines, designated ‘tier 1’ and ‘tier 2’ (Box 1). To capture a
broader spectrum of biological diversity, selected assays were also
executed on a third tier comprising more than 100 cell types including
primary cells. All data and protocol descriptions are available at
http://www.encodeproject.org/, and a User’s Guide including details
of cell-type choice and limitations was published recently”.

Integration methodology

For consistency, data were generated and processed using standardized
guidelines, and for some assays, new quality-control measures were
designed (see refs 3, 12 and http://encodeproject.org/ENCODE/
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dataStandards.html; A. Kundaje, personal communication). Uniform
data-processing methods were developed for each assay (see
Supplementary Information; A. Kundaje, personal communication),
and most assay results can be represented both as signal information
(a per-base estimate across the genome) and as discrete elements
(regions computationally identified as enriched for signal). Extensive
processing pipelines were developed to generate each representation
(M. M. Hoffman et al, manuscript in preparation and A. Kundaje,
personal communication). In addition, we developed the irreproducible
discovery rate (IDR)"* measure to provide a robust and conservative
estimate of the threshold where two ranked lists of results from bio-
logical replicates no longer agree (that is, are irreproducible), and we
applied this to defining sets of discrete elements. We identified, and
excluded from most analyses, regions yielding untrustworthy signals
likely to be artefactual (for example, multicopy regions). Together, these
regions comprise 0.39% of the genome (see Supplementary
Information). The poster accompanying this issue represents different
ENCODE-identified elements and their genome coverage.

Transcribed and protein-coding regions

We used manual and automated annotation to produce a compre-
hensive catalogue of human protein-coding and non-coding RNAs as
well as pseudogenes, referred to as the GENCODE reference gene
set''"> (Supplementary Table 1, section U). This includes 20,687
protein-coding genes (GENCODE annotation, v7) with, on average,
6.3 alternatively spliced transcripts (3.9 different protein-coding tran-
scripts) per locus. In total, GENCODE-annotated exons of protein-
coding genes cover 2.94% of the genome or 1.22% for protein-coding
exons. Protein-coding genes span 33.45% from the outermost start to
stop codons, or 39.54% from promoter to poly(A) site. Analysis of
mass spectrometry data from K562 and GM12878 cell lines yielded 57
confidently identified unique peptide sequences in intergenic regions
relative to GENCODE annotation. Taken together with evidence of
pervasive genome transcription'®, these data indicate that additional
protein-coding genes remain to be found.

In addition, we annotated 8,801 automatically derived small RNAs
and 9,640 manually curated long non-coding RNA (IncRNA) loci'’.
Comparing IncRNAs to other ENCODE data indicates that IncRNAs
are generated through a pathway similar to that for protein-coding
genes'”. The GENCODE project also annotated 11,224 pseudogenes,
of which 863 were transcribed and associated with active chromatin'®.

RNA

We sequenced RNA'® from different cell lines and multiple subcellular
fractions to develop an extensive RNA expression catalogue. Using a
conservative threshold to identify regions of RNA activity, 62% of
genomic bases are reproducibly represented in sequenced long (>200
nucleotides) RNA molecules or GENCODE exons. Of these bases, only
5.5% are explained by GENCODE exons. Most transcribed bases are
within or overlapping annotated gene boundaries (that s, intronic), and
only 31% of bases in sequenced transcripts were intergenic'’.

We used CAGE-seq (5’ cap-targeted RNA isolation and sequencing)
to identify 62,403 transcription start sites (TSSs) at high confidence
(IDR of 0.01) in tier 1 and 2 cell types. Of these, 27,362 (44%) are within
100 base pairs (bp) of the 5" end of a GENCODE-annotated transcript
or previously reported full-length messenger RNA. The remaining
regions predominantly lie across exons and 3’ untranslated regions
(UTRs), and some exhibit cell-type-restricted expression; these may
represent the start sites of novel, cell-type-specific transcripts.

Finally, we saw a significant proportion of coding and non-coding
transcripts processed into steady-state stable RNAs shorter than 200
nucleotides. These precursors include transfer RNA, microRNA,
small nuclear RNA and small nucleolar RNA (tRNA, miRNA,
snRNA and snoRNA, respectively) and the 5" termini of these pro-
cessed products align with the capped 5" end tags'®.
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Table 1& Summary of transcription factor classes analysed in
ENCOD

Acronym Description Factors
analysed
ChromRem ATP-dependent chromatin complexes 5
DNARep DNA repair 3
HlSase Histone acetylation, deacetylation or methylation 8
complexes
Other Cyclin kinase associated with transcription 1
Pol2 Pol Il subunit 1 (2 forms)
Pol3 Pol lll-associated 6
TFNS General Pol ll-associated factor, not site-specific 8
TFSS Pol Il transcription factor with sequence-specific DNA 87
binding
Protein bound regions

To identify regulatory regions directly, we mapped the binding loca-
tions of 119 different DNA-binding proteins and a number of RNA
polymerase components in 72 cell types using ChIP-seq (Table 1,
Supplementary Table 1, section N, and ref. 19); 87 (73%) were
sequence-specific transcription factors. Overall, 636,336 binding
regions covering 231 megabases (Mb; 8.1%) of the genome are
enriched for regions bound by DNA-binding proteins across all cell
types. We assessed each protein-binding site for enrichment of known
DNA-binding motifs and the presence of novel motifs. Overall, 86%
of the DNA segments occupied by sequence-specific transcription
factors contained a strong DNA-binding motif, and in most (55%)
cases the known motif was most enriched (P. Kheradpour and
M. Kellis, manuscript in preparation).

Protein-binding regions lacking high or moderate affinity cognate
recognition sites have 21% lower median scores by rank than regions
with recognition sequences (Wilcoxon rank sum P value <10719),
Eighty-two per cent of the low-signal regions have high-affinity recog-
nition sequences for other factors. In addition, when ChIP-seq peaks
are ranked by their concordance with their known recognition
sequence, the median DNase I accessibility is twofold higher in the
bottom 20% of peaks than in the upper 80% (genome structure
correction (GSC)* P value <10 '), consistent with previous
observations’*. We speculate that low signal regions are either
lower-affinity sites® or indirect transcription-factor target regions
associated through interactions with other factors (see also refs 25, 26).

We organized all the information associated with each transcrip-
tion factor—including the ChIP-seq peaks, discovered motifs and
associated histone modification patterns—in FactorBook (http://www.
factorbook.org; ref. 26), a public resource that will be updated as the
project proceeds.

DNase I hypersensitive sites and footprints

Chromatin accessibility characterized by DNase I hypersensitivity is
the hallmark of regulatory DNA regions*”**. We mapped 2.89 million
unique, non-overlapping DNase I hypersensitive sites (DHSs) by
DNase-seq in 125 cell types, the overwhelming majority of which lie
distal to TSSs*. We also mapped 4.8 million sites across 25 cell types

Table 2 | Summary of ENCODE histone modifications and variants
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that displayed reduced nucleosomal crosslinking by FAIRE, many of
which coincide with DHSs. In addition, we used micrococcal nuclease
to map nucleosome occupancy in GM12878 and K562 cells™.

In tier 1 and tier 2 cell types, we identified a mean of 205,109 DHSs
per cell type (at false discovery rate (FDR) 1%), encompassing an
average of 1.0% of the genomic sequence in each cell type, and 3.9%
in aggregate. On average, 98.5% of the occupancy sites of transcription
factors mapped by ENCODE ChIP-seq (and, collectively, 94.4% of all
1.1 million transcription factor ChIP-seq peaks in K562 cells) lie within
accessible chromatin defined by DNase I hotspots®. However, a
small number of factors, most prominently heterochromatin-bound
repressive complexes (for example, the TRIM28-SETDB1-ZNF274
complex®"** encoded by the TRIM28, SETDBI and ZNF274 genes),
seem to occupy a significant fraction of nucleosomal sites.

Using genomic DNase I footprinting®** on 41 cell types we iden-
tified 8.4 million distinct DNase I footprints (FDR 1%)*. Our de novo
motif discovery on DNase I footprints recovered ~90% of known
transcription factor motifs, together with hundreds of novel evolutio-
narily conserved motifs, many displaying highly cell-selective occu-
pancy patterns similar to major developmental and tissue-specific
regulators.

Regions of histone modification

We assayed chromosomal locations for up to 12 histone modifications
and variants in 46 cell types, including a complete matrix of eight
modifications across tier 1 and tier 2. Because modification states
may span multiple nucleosomes, which themselves can vary in position
across cell populations, we used a continuous signal measure of histone
modifications in downstream analysis, rather than calling regions
(M. M. Hoffman et al., manuscript in preparation; see http://code.
google.com/p/align2rawsignal/). For the strongest, ‘peak-like’ histone
modifications, we used MACS™ to characterize enriched sites. Table 2
describes the different histone modifications, their peak characteristics,
and a summary of their known roles (reviewed in refs 36-39).

Our data show that global patterns of modification are highly vari-
able across cell types, in accordance with changes in transcriptional
activity. Consistent with previous studies*>*', we find that integration
of the different histone modification information can be used system-
atically to assign functional attributes to genomic regions (see below).

DNA methylation

Methylation of cytosine, usually at CpG dinucleotides, is involved in
epigenetic regulation of gene expression. Promoter methylation is
typically associated with repression, whereas genic methylation cor-
relates with transcriptional activity*>. We used reduced representation
bisulphite sequencing (RRBS) to profile DNA methylation quantita-
tively for an average of 1.2 million CpGs in each of 82 cell lines and
tissues (8.6% of non-repetitive genomic CpGs), including CpGs in
intergenic regions, proximal promoters and intragenic regions (gene
bodies)*’, although it should be noted that the RRBS method pref-
erentially targets CpG-rich islands. We found that 96% of CpGs
exhibited differential methylation in at least one cell type or tissue

Histone modification Signal Putative functions
or variant characteristics
H2A.Z Peak Histone protein variant (H2A.Z) associated with regulatory elements with dynamic chromatin

H3K4mel Peak/region Mark of regulatory elements associated with enhancers and other distal elements, but also enriched downstream of transcription starts
H3K4me2 Peak Mark of regulatory elements associated with promoters and enhancers

H3K4me3 Peak Mark of regulatory elements primarily associated with promoters/transcription starts

H3K9ac Peak Mark of active regulatory elements with preference for promoters

H3K9mel Region Preference for the 5’ end of genes

H3K9me3 Peak/region Repressive mark associated with constitutive heterochromatin and repetitive elements

H3K27ac Peak Mark of active regulatory elements; may distinguish active enhancers and promoters from their inactive counterparts
H3K27me3 Region Repressive mark established by polycomb complex activity associated with repressive domains and silent developmental genes
H3K36me3 Region Elongation mark associated with transcribed portions of genes, with preference for 3’ regions after intron 1
H3K79me2 Region Transcription-associated mark, with preference for 5’ end of genes
H4K20mel Region Preference for 5’ end of genes
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assayed (K. Varley et al, personal communication), and levels of
DNA methylation correlated with chromatin accessibility. The most
variably methylated CpGs are found more often in gene bodies and
intergenic regions, rather than in promoters and upstream regulatory
regions. In addition, we identified an unexpected correspondence
between unmethylated genic CpG islands and binding by P300, a
histone acetyltransferase linked to enhancer activity*:.

Because RRBS is a sequence-based assay with single-base resolu-
tion, we were able to identify CpGs with allele-specific methylation
consistent with genomic imprinting, and determined that these loci
exhibit aberrant methylation in cancer cell lines (K. Varley et al.,
personal communication). Furthermore, we detected reproducible
cytosine methylation outside CpG dinucleotides in adult tissues®,
providing further support that this non-canonical methylation event
may have important roles in human biology (K. Varley et al., personal
communication).

Chromosome-interacting regions

Physical interaction between distinct chromosome regions that can be
separated by hundreds of kilobases is thought to be important in the
regulation of gene expression*’. We used two complementary chro-
mosome conformation capture (3C)-based technologies to probe
these long-range physical interactions.

A 3C-carbon copy (5C) approach*”*® provided unbiased detection
of long-range interactions with TSSs in a targeted 1% of the genome
(the 44 ENCODE pilot regions) in four cell types (GM12878, K562,
HeLa-S3 and H1 hESC)*. We discovered hundreds of statistically
significant long-range interactions in each cell type after accounting
for chromatin polymer behaviour and experimental variation. Pairs
of interacting loci showed strong correlation between the gene
expression level of the TSS and the presence of specific functional
element classes such as enhancers. The average number of distal ele-
ments interacting with a TSS was 3.9, and the average number of TSSs
interacting with a distal element was 2.5, indicating a complex net-
work of interconnected chromatin. Such interwoven long-range
architecture was also uncovered genome-wide using chromatin inter-
action analysis with paired-end tag sequencing (ChIA-PET)* applied
to identify interactions in chromatin enriched by RNA polymerase II
(PolII) ChIP from five cell types®'. In K562 cells, we identified 127,417
promoter-centred chromatin interactions using ChIA-PET, 98% of
which were intra-chromosomal. Whereas promoter regions of 2,324
genes were involved in ‘single-gene’ enhancer—promoter interactions,
those of 19,813 genes were involved in ‘multi-gene’ interaction com-
plexes spanning up to several megabases, including promoter-
promoter and enhancer-promoter interactions.

These analyses portray a complex landscape of long-range gene-
element connectivity across ranges of hundreds of kilobases to several
megabases, including interactions among unrelated genes (Supplemen-
tary Fig. 1, section Y). Furthermore, in the 5C results, 50-60% of long-
range interactions occurred in only one of the four cell lines, indicative
of a high degree of tissue specificity for gene-element connectivity*.

Summary of ENCODE-identified elements

Accounting for all these elements, a surprisingly large amount of the
human genome, 80.4%, is covered by at least one ENCODE-identified
element (detailed in Supplementary Table 1, section Q). The broadest
element class represents the different RNA types, covering 62% of the
genome (although the majority is inside of introns or near genes).
Regions highly enriched for histone modifications form the next
largest class (56.1%). Excluding RNA elements and broad histone
elements, 44.2% of the genome is covered. Smaller proportions of
the genome are occupied by regions of open chromatin (15.2%) or
sites of transcription factor binding (8.1%), with 19.4% covered by at
least one DHS or transcription factor ChIP-seq peak across all cell
lines. Using our most conservative assessment, 8.5% of bases are
covered by either a transcription-factor-binding-site motif (4.6%)
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or a DHS footprint (5.7%). This, however, is still about 4.5-fold higher
than the amount of protein-coding exons, and about twofold higher
than the estimated amount of pan-mammalian constraint.

Given that the ENCODE project did not assay all cell types, or all
transcription factors, and in particular has sampled few specialized or
developmentally restricted cell lineages, these proportions must be
underestimates of the total amount of functional bases. However,
many assays were performed on more than one cell type, allowing
assessment of the rate of discovery of new elements. For both DHSs
and CTCF-bound sites, the number of new elements initially increases
rapidly with a steep gradient for the saturation curve and then slows
with increasing number of cell types (Supplementary Figs 1 and 2,
section R). With the current data, at the flattest part of the saturation
curve each new cell type adds, on average, 9,500 DHS elements (across
106 cell types) and 500 CTCF-binding elements (across 49 cell types),
representing 0.45% of the total element number. We modelled
saturation for the DHSs and CTCF-binding sites using a Weibull
distribution (r*>0.999) and predict saturation at approximately
4.1 million (standard error (s.e.) = 108,000) and 185,100 (s.e. = 18,020)
sites, respectively, indicating that we have discovered around half of the
estimated total DHSs. These estimates represent a lower bound, but
reinforce the observation that there is more non-coding functional
DNA than either coding sequence or mammalian evolutionarily con-
strained bases.

The impact of selection on functional elements

From comparative genomic studies, at least 3-8% of bases are under
purifying (negative) selection*"!, indicating that these bases may
potentially be functional. We previously found that 60% of mammalian
evolutionarily constrained bases were annotated in the ENCODE pilot
project, but also observed that many functional elements lacked
evidence of constraint?, a conclusion substantiated by others®*~*. The
diversity and genome-wide occurrence of functional elements now
identified provides an unprecedented opportunity to examine further
the forces of negative selection on human functional sequences.

We examined negative selection using two measures that highlight
different periods of selection in the human genome. The first measure,
inter-species, pan-mammalian constraint (GERP-based scores;
24 mammals®), addresses selection during mammalian evolution.
The second measure is intra-species constraint estimated from the
numbers of variants discovered in human populations using data from
the 1000 Genomes project™, and covers selection over human evolu-
tion. In Fig. 1, we plot both these measures of constraint for different
classes of identified functional elements, excluding features overlapping
exons and promoters that are known to be constrained. Each graph also
shows genomic background levels and measures of coding-gene con-
straint for comparison. Because we plot human population diversity on
an inverted scale, elements that are more constrained by negative selec-
tion will tend to lie in the upper and right-hand regions of the plot.

For DNase I elements (Fig. 1b) and bound motifs (Fig. 1c), most
sets of elements show enrichment in pan-mammalian constraint and
decreased human population diversity, although for some cell types
the DNase I sites do not seem overall to be subject to pan-mammalian
constraint. Bound transcription factor motifs have a natural control
from the set of transcription factor motifs with equal sequence poten-
tial for binding but without binding evidence from ChIP-seq experi-
ments—in all cases, the bound motifs show both more mammalian
constraint and higher suppression of human diversity.

Consistent with previous findings, we do not observe genome-wide
evidence for pan-mammalian selection of novel RNA sequences
(Fig. 1d). There are also a large number of elements without mammalian
constraint, between 17% and 90% for transcription-factor-binding
regions as well as DHSs and FAIRE regions. Previous studies could
not determine whether these sequences are either biochemically active,
but with little overall impact on the organism, or under lineage-
specific selection. By isolating sequences preferentially inserted into
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Figure 1| Impact of selection on ENCODE functional elements in
mammals and human populations. a, Levels of pan-mammalian constraint
(mean GERP score; 24 mammals®, x axis) compared to diversity, a measure of
negative selection in the human population (mean expected heterozygosity,
inverted scale, y axis) for ENCODE data sets. Each point is an average for a
single data set. The top-right corners have the strongest evolutionary constraint
and lowest diversity. Coding (C), UTR (U), genomic (G), intergenic (IG) and
intronic (IN) averages are shown as filled squares. In each case the vertical and
horizontal cross hairs show representative levels for the neutral expectation for
mammalian conservation and human population diversity, respectively. The
spread over all non-exonic ENCODE elements greater than 2.5 kb from TSSs is
shown. The inner dashed box indicates that parts of the plot have been
magnified for the surrounding outer panels, although the scales in the outer
plots provide the exact regions and dimensions magnified. The spread for DHS
sites (b) and RNA elements (d) is shown in the plots on the left. RNA elements

the primate lineage, which is only feasible given the genome-wide scale
of this data, we are able to examine this issue specifically. Most primate-
specific sequence is due to retrotransposon activity, but an appreciable
proportion is non-repetitive primate-specific sequence. Of 104,343,413
primate-specific bases (excluding repetitive elements), 67,769,372
(65%) are found within ENCODE-identified elements. Examination
of 227,688 variants segregating in these primate-specific regions
revealed that all classes of elements (RNA and regulatory) show
depressed derived allele frequencies, consistent with recent negative
selection occurring in at least some of these regions (Fig. 1e). An alterna-
tive approach examining sequences that are not clearly under pan-
mammalian constraint showed a similar result (L. Ward and
M. Kellis, manuscript submitted). This indicates that an appreciable
proportion of the unconstrained elements are lineage-specific elements
required for organismal function, consistent with long-standing views
of recent evolution®®, and the remainder are probably ‘neutral’ elements
that are not currently under selection but may still affect cellular or
larger scale phenotypes without an effect on fitness.

DAF

are either long novel intronic (dark green) or long intergenic (light green)
RNAs. The horizontal cross hairs are colour-coded to the relevant data set in
d. ¢, Spread of transcription factor motif instances either in regions bound by
the transcription factor (orange points) or in the corresponding unbound motif
matches in grey, with bound and unbound points connected with an arrow in
each case showing that bound sites are generally more constrained and less
diverse. e, Derived allele frequency spectrum for primate-specific elements,
with variations outside ENCODE elements in black and variations covered by
ENCODE elements in red. The increase in low-frequency alleles compared to
background is indicative of negative selection occurring in the set of variants
annotated by the ENCODE data. f, Aggregation of mammalian constraint
scores over the glucocorticoid receptor (GR) transcription factor motif in
bound sites, showing the expected correlation with the information content of
bases in the motif. An interactive version of this figure is available in the online
version of the paper.

The binding patterns of transcription factors are not uniform, and
we can correlate both inter- and intra-species measures of negative
selection with the overall information content of motif positions. The
selection on some motif positions is as high as protein-coding exons
(Fig. 1f; L. Ward and M. Kellis, manuscript submitted). These
aggregate measures across motifs show that the binding preferences
found in the population of sites are also relevant to the per-site beha-
viour. By developing a per-site metric of population effect on bound
motifs, we found that highly constrained bound instances across
mammals are able to buffer the impact of individual variation”.

ENCODE data integration with known genomic features
Promoter-anchored integration

Many of the ENCODE assays directly or indirectly provide informa-
tion about the action of promoters. Focusing on the TSSs of protein-
coding transcripts, we investigated the relationships between different
ENCODE assays, in particular testing the hypothesis that RNA
expression (output) can be effectively predicted from patterns of
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chromatin modification or transcription factor binding (input).
Consistent with previous reports®, we observe two relatively distinct
types of promoter: (1) broad, mainly (C+G)-rich, TATA-less promoters;
and (2) narrow, TATA-box-containing promoters. These promoters
have distinct patterns of histone modifications, and transcription-fac-
tor-binding sites are selectively enriched in each class (Supplementary
Fig. 1, section Z).

We developed predictive models to explore the interaction between
histone modifications and measures of transcription at promoters,
distinguishing between modifications known to be added as a con-
sequence of transcription (such as H3K36me3 and H3K79me2) and
other categories of histone marks™. In our analyses, the best models
had two components: an initial classification component (on/off) and a
second quantitative model component. Our models showed that
activating acetylation marks (H3K27ac and H3K9ac) are roughly
as informative as activating methylation marks (H3K4me3 and
H3K4me2) (Fig. 2a). Although repressive marks, such as H3K27me3

a CAGE poly(A)* K562 whole cell

or H3K9me3, show negative correlation both individually and in the
model, removing these marks produces only a small reduction in
model performance. However, for a subset of promoters in each cell
line, repressive histone marks (H3K27me3 or H3K9me3) must be used
to predict their expression accurately. We also examined the interplay
between the H3K79me2 and H3K36me3 marks, both of which mark
gene bodies, probably reflecting recruitment of modification enzymes
by polymerase isoforms. As described previously, H3K79me2 occurs
preferentially at the 5" ends of gene bodies and H3K36me3 occurs
more 3, and our analyses support the previous model in which the
H3K79me2 to H3K36me3 transition occurs at the first 3" splice site®.

Few previous studies have attempted to build qualitative or quant-
itative models of transcription genome-wide from transcription
factor levels because of the paucity of documented transcription-
factor-binding regions and the lack of coordination around a single
cell line. We thus examined the predictive capacity of transcription-
factor-binding signals for the expression levels of promoters (Fig. 2b).
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Figure 2 | Modelling transcription levels from histone modification and
transcription-factor-binding patterns. a, b, Correlative models between
either histone modifications or transcription factors, respectively, and RNA
production as measured by CAGE tag density at TSSs in K562 cells. In each case
the scatter plot shows the output of the correlation models (x axis) compared to
observed values (y axis). The bar graphs show the most important histone
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modifications (a) or transcription factors (b) in both the initial classification
phase (top bar graph) or the quantitative regression phase (bottom bar graph),
with larger values indicating increasing importance of the variable in the model.
Further analysis of other cell lines and RNA measurement types is reported
elsewhere™”’. AUC, area under curve; Gini, Gini coefficient; RMSE, root mean
square error.
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In contrast to the profiles of histone modifications, most transcription
factors show enriched binding signals in a narrow DNA region near
the TSS, with relatively higher binding signals in promoters with
higher CpG content. Most of this correlation could be recapitulated
by looking at the aggregate binding of transcription factors without
specific transcription factor terms. Together, these correlation models
indicate both that a limited set of chromatin marks are sufficient to
‘explain’ transcription and that a variety of transcription factors might
have broad roles in general transcription levels across many genes. It is
important to note that this is an inherently observational study of
correlation patterns, and is consistent with a variety of mechanistic
models with different causal links between the chromatin, transcrip-
tion factor and RNA assays. However, it does indicate that there is
enough information present at the promoter regions of genes to
explain most of the variation in RNA expression.

We developed predictive models similar to those used to model
transcriptional activity to explore the relationship between levels of
histone modification and inclusion of exons in alternately spliced
transcripts. Even accounting for expression level, H3K36me3 has a
positive contribution to exon inclusion, whereas H3K79me2 has a
negative contribution (H. Tilgner et al., manuscript in preparation).
By monitoring the RNA populations in the subcellular fractions of
K562 cells, we found that essentially all splicing is co-transcriptional®’,
further supporting a link between chromatin structure and splicing.

Transcription-factor-binding site-anchored integration
Transcription-factor-binding sites provide a natural focus around
which to explore chromatin properties. Transcription factors are often
multifunctional and can bind a variety of genomic loci with different
combinations and patterns of chromatin marks and nucleosome organ-
ization. Hence, rather than averaging chromatin mark profiles across all
binding sites of a transcription factor, we developed a clustering pro-
cedure, termed the Clustered Aggregation Tool (CAGT), to identify
subsets of binding sites sharing similar but distinct patterns of chro-
matin mark signal magnitude, shape and hidden directionality™. For
example, the average profile of the repressive histone mark H3K27me3
over all 55,782 CTCF-binding sites in H1 hESCs shows poor signal
enrichment (Fig. 3a). However, after grouping profiles by signal
magnitude we found a subset of 9,840 (17.6%) CTCEF-binding sites
that exhibit significant flanking H3K27me3 signal. Shape and orienta-
tion analysis further revealed that the predominant signal profile for
H3K27me3 around CTCF peak summits is asymmetric, consistent
with a boundary role for some CTCF sites between active and
polycomb-silenced domains. Further examples are provided in
Supplementary Figs 5 and 6 of section E. For TAF1, predominantly
found near TSSs, the asymmetric sites are orientated with the direction
of transcription. However, for distal sites, such as those bound by
GATAI and CTCEF, we also observed a high proportion of asymmetric
histone patterns, although independent of motif directionality. In fact,
all transcription-factor-binding data sets in all cell lines show
predominantly asymmetric patterns (asymmetry ratio >0.6) for all
chromatin marks but not for DNase I signal (Fig. 3b). This indicates
that most transcription-factor-bound chromatin events correlate with
structured, directional patterns of histone modifications, and that pro-
moter directionality is not the only source of orientation at these sites.
We also examined nucleosome occupancy relative to the symmetry
properties of chromatin marks around transcription-factor-binding
sites. Around TSSs, there is usually strong asymmetric nucleosome
occupancy, often accounting for most of the histone modification
signal (for instance, see Supplementary Fig. 4, section E). However,
away from TSSs, there is far less concordance. For example, CTCF-
binding sites typically show arrays of well-positioned nucleosomes on
either side of the peak summit (Supplementary Fig. 1, section E)*.
Where the flanking chromatin mark signal is high, the signals are
often asymmetric, indicating differential marking with histone
modifications (Supplementary Figs 2 and 3, section E). Thus, we
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Figure 3 | Patterns and asymmetry of chromatin modification at
transcription-factor-binding sites. a, Results of clustered aggregation of
H3K27me3 modification signal around CTCF-binding sites (a multifunctional
protein involved with chromatin structure). The first three plots (left column)
show the signal behaviour of the histone modification over all sites (top) and
then split into the high and low signal components. The solid lines show the
mean signal distribution by relative position with the blue shaded area
delimiting the tenth and ninetieth percentile range. The high signal component
is then decomposed further into six different shape classes on the right (see ref.
30 for details). The shape decomposition process is strand aware. b, Summary
of shape asymmetry for DNase I, nucleosome and histone modification signals
by plotting an asymmetry ratio for each signal over all transcription-factor-
binding sites. All histone modifications measured in this study show
predominantly asymmetric patterns at transcription-factor-binding sites. An
interactive version of this figure is available in the online version of the paper.

confirm on a genome-wide scale that transcription factors can form
barriers around which nucleosomes and histone modifications are
arranged in a variety of configurations®>~*. This is explored in further
detail in refs 25, 26 and 30.

Transcription factor co-associations

Transcription-factor-binding regions are nonrandomly distributed
across the genome, with respect to both other features (for example,
promoters) and other transcription-factor-binding regions. Within the
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Figure 4 | Co-association between transcription factors. a, Significant co-
associations of transcription factor pairs using the GSC statistic across the entire
genome in K562 cells. The colour strength represents the extent of association
(from red (strongest), orange, to yellow (weakest)), whereas the depth of colour
represents the fit to the GSC** model (where white indicates that the statistical
model is not appropriate) as indicated by the key. Most transcription factors have
anonrandom association to other transcription factors, and these associations are
dependent on the genomic context, meaning that once the genome is separated
into promoter proximal and distal regions, the overall levels of co-association

tier 1 and 2 cell lines, we found 3,307 pairs of statistically co-associated

factors (P <1 X 10~ "%, GSC) involving 114 out of a possible 117 factors
(97%) (Fig. 4a). These include expected associations, such as Jun and

Table 3 | Summary of the combined state types

(z-score)

decrease, but more specific relationships are uncovered. b, Three classes of
behaviour are shown. The first column shows a set of associations for which
strength is independent of location in promoter and distal regions, whereas the
second column shows a set of transcription factors that have stronger associations
in promoter-proximal regions. Both of these examples are from data in K562 cells
and are highlighted on the genome-wide co-association matrix (a) by the labelled
boxes A and B, respectively. The third column shows a set of transcription factors
that show stronger association in distal regions (in the H1 hESC line). An
interactive version of this figure is available in the online version of the paper.

Fos, and some less expected novel associations, such as TCF7L2 with
HNF4-o. and FOXA2 (ref. 66; a full listing is given in Supplementary
Table 1, section F). When one considers promoter and intergenic

Label Description

Details* Colour

CTCF CTCF-enriched element

Sites of CTCF signal lacking histone modifications, often associated with open chromatin. Many Turquoise

probably have a function in insulator assays, but because of the multifunctional nature of CTCF, we
are conservative in our description. Also enriched for the cohesin components RAD21 and SMC3;
CTCF is known to recruit the cohesin complex.

E Predicted enhancer

Regions of open chromatin associated with H3K4me1 signal. Enriched for other enhancer-

Orange

associated marks, including transcription factors known to act at enhancers. In enhancer assays,
many of these (>50%) function as enhancers. A more conservative alternative would be cis-
regulatory regions. Enriched for sites for the proteins encoded by EP300, FOS, FOSL1, GATA2,
HDACS, JUNB, JUND, NFE2, SMARCA4, SMARCB1, SIRT6 and TAL1 genes in K562 cells. Have
nuclear and whole-cell RNA signal, particularly poly(A)— fraction.

PF Predicted promoter flanking region

Regions that generally surround TSS segments (see below).
R Predicted repressed or low-activity region Thisisamerged state thatincludes H3K27me3 polycomb-enriched regions, along with regions that

Light red
Grey

are silent in terms of observed signal for the input assays to the segmentations (low or no signal).

They may have other signals (for example, RNA, not in the segmentation input data). Enriched for

sites for the proteins encoded by REST and some other factors (for example, proteins encoded by
BRF2, CEBPB, MAFK, TRIM28, ZNF274 and SETDB1 genes in K562 cells).

TSS  Predicted promoter region including TSS

Found close to or overlapping GENCODE TSS sites. High precision/recall for TSSs. Enriched for

Bright red

H3K4me3. Sites of open chromatin. Enriched for transcription factors known to act close to promoters
and polymerases Pol Il and Pol lll. Short RNAs are most enriched in these segments.

T Predicted transcribed region

Overlap gene bodies with H3K36me3 transcriptional elongation signal. Enriched for phosphorylated Dark 