TABLE of GENETIC DISORDERS | Disease | Category | Pathogenesis / Heredity | Pathology, Cardinal
Symptoms | |---------------------------|----------|--|---| | Cystic Fibrosis | | Autosomal Recessive. CFTR gene defect on Chrom 7> No Cl ⁻ transport and failure to hydrate mucous secretions (no NaCl transport)> excessively viscous mucoid exocrine secretions | Meconium ileus (caused by thick, mucoid meconium), respiratory bronchiectasis, <i>Pseudomonas</i> pn eumonia, pancreatic insufficiency, hypertonic (high Cl ⁻ concentration) sweat. | | Fanconi
Anemia | | Autosomal Recessive congenital | Normocytic anemia with neutropenia. | | | | pancytopenia. | Short stature, microcephaly, hypogenitalism, strabismus, anomalies of the thumbs, radii, and kidneys, mental retardation, and microphthalmia. | | Hartnup's
Disease | | Autosomal Recessive. Defect in GI uptake of neutral amino acids> malabsorption of tryptophan (niacin precursor)> niacin deficiency among other things. | Pellagra-like syndrome
(diarrhea, dementia,
dermatitis), light-sensitive skin
rash, temporary cerebellar
ataxia. | | Kartagener's
Syndrome | | Autosomal Recessive. Defect in dynein arms > lost motility of cilia | Recurrent sinopulmonary infections (due to impaired ciliary tract). Situs inversus, due to impaired ciliary motion during embryogenesis: lateral transposition of lungs, abdominal and thoracic viscera are on opposite sides of the body as normal. Possible dextrocardia, male sterility. | | Pyruvate
Dehydrogenase | | Autosomal
Recessive. Pyruvate | Neurologic defects. | | Deficiency | | Dehydrogenase deficiency> buildup of lactate and pyruvate> lactic acidosis. | Treatment: Increase intake of ketogenic nutrients (leucine , lysine)> increase | | | | | other sources. | |--|--|--|--| | Xeroderma
Pigmentosum | | Autosomal Recessive. Defect
in DNA repair, inability to
repair thymine
dimers resulting from UV-
light exposure> excessive
skin damage and skin cancer. | Dry skin, melanomas, premalignant lesions, other cancers. Ophthalmic and neurologic abnormalities. | | Familial
Hypercholester
olemia | Autosoma
l
Dominant
Disorders | Autosomal Dominant. LDL-Receptor defect. | Heterozygous: accelerated atherosclerosis. Homozygous: accelerated atherosclerosis, MI by age 35, xanthomas . | | Hereditary
Hemorrhagic
Telangiectasia
(Osler-Weber-
Rendu
Syndrome) | Autosoma
l
Dominant
Disorders | Autosomal Dominant. | Telangiectasias of skin and mucous membranes. | | Hereditary
Spherocytosis | Autosoma
l
Dominant
Disorders | Autosomal Dominant. Band- 3 deficiency in RBC membrane> spherical shape to cells. Other RBC structural enzyme deficiencies can cause it, too. | Sequestration of spherocytes in spleen> hemolytic anemia. | | Huntington's
Disease | Autosoma
l
Dominant
Disorders | Autosomal Dominant, 100% penetrance. Genetic defect on Chrom 4 | Progressive dementia with onset in adulthood, choreiform movements, athetosis. | | Marfan's
Syndrome | Autosoma
l
Dominant
Disorders | Autosomal Dominant. Fibrillin deficiency> faulty scaffolding in connective tissue (elastin has no anchor). | Arachnodactyly, dissecting aortic aneurysms, ectopia lentis (subluxation of lens), mitral valve prolapse. | | Neurofibromato
sis (Von
Recklinghausen
Disease) | Autosoma
l
Dominant
Disorders | Autosomal Dominant. NF1 gene defect (no GTPase protein)> dysregulation of <i>Ras</i> tumor-suppressor protein. | Multiple neurofibromas (Café au Lait spots) which may become malignant, Lisch nodules (pigmented hamartomas of the iris). | formation of Acetyl-CoA from Increased risk for tumors: | | | | pheochromocytoma, Wilms
tumor, Rhabdomyosarcoma,
leukemias. | |---------------------------------------|---|---|---| | Tuberous
Sclerosis | Autosoma
l
Dominant
Disorders | Autosomal Dominant. | Tubers (glial nodules),
seizures, mental retardation.
Associated with adenoma
sebaceum (facial lesion),
myocardial
rhabdomyomas, renal
angiomyolipomas. | | Von Hippel-
Lindau
Syndrome | Autosoma
l
Dominant
Disorders | Autosomal Dominant, short arm of chromosome 3. Same genetic region is associated with incidence of renal cell carcinoma . | (1) Hemangioblastomas of cerebellum, medulla, or retina, (2) adenomas, (3) cysts in visceral organs. High risk for renal cell carcinoma. | | Congenital
Fructose
Intolerance | Carbohyd
rate
Metabolis
m Defect | Autosomal Recessive. Aldolase B deficiency> buildup of Fructose-1-Phosphate in tissues> inhibit glycogenolysis and gluconeogenesis. | Severe hypoglycemia . Treatment: <i>Remove fructose from diet</i> . | | Galactosemia | Carbohyd
rate
Metabolis
m Defect | Autosomal Recessive. Inability to convert galactose to glucose> accumulation of galactose in many tissues. | Failure to thrive, infantile cataracts, mental retardation. Progressive hepatic failure, cirrhosis , death. | | | | (1) Classic form: Galactose-1-
phosphate
Uridyltransferase deficiency. | Galactokinase-deficiency: infantile cataracts are prominent. | | | | (2) Rarer form: Galactokinase deficienc y. | Treatment: in either case, remove galactose from diet. | | Angelman
Syndrome | Chromoso
mal | Deletion of part of short arm of chromosome 15 , maternal copy . An example of genomic imprinting . | Mental retardation, ataxic gait, seizures. Inappropriate laughter. | | Cri du Chat
Syndrome | Chromoso
mal | 5p- , deletion of the long arm of chromosome 5. | "Cry of the cat." Severe mental retardation, microcephaly, cat-like cry. Low birth-weight, round-face, hypertelorism | | | | | (wide-set eyes), low-set ears, epicanthal folds. | |--------------------------------------|--|---|---| | Down
Syndrome
(Trisomy 21) | Chromoso
mal | Trisomy 21, with risk increasing with maternal age. Familial form (no ageassociated risk) is translocation t(21,x) in a minority of cases. | Most common cause of mental retardation. Will see epicanthal folds, simian crease, brushfield spots in eyes. Associated syndromes: congenital heart disease, leukemia,premature Alzheimer's disease (same morphological changes). | | Edward's
Syndrome
(Trisomy 18) | Chromoso
mal | Trisomy 18 | Mental retardation,
micrognathia, rocker-bottom
feet , congenital heart disease,
flexion deformities of fingers.
Death by 1 year old. | | Patau's
Syndrome
(Trisomy 13) | Chromoso
mal | Trisomy 13 | Mental retardation,
microphthalmia, cleft lip and
palate , polydactyly, rocker-
bottom feet, congenital heart
disease. Similar to and more
severe than Edward's
Syndrome. Death by 1 year old. | | Prader-Willi
Syndrome | Chromoso
mal | Deletion of part of short arm of chromosome 15 , paternal copy . An example of genomic imprinting. | Mental retardation, short
stature, hypotonia, obesity and
huge appetite after infancy.
Small hands and feet,
hypogonadism. | | Fragile-X
Syndrome | Chromoso
mal
Sex
chromoso
me | Progressively longer tandem repeats on the long arm of the X-chromosome. The longer the number of repeats, the worse the syndrome. Tandem repeats tend to accumulate through generations. | Second most common cause of mental retardation next to Down Syndrome. Macroorchidism (enlarged testes) in males. | | Klinefelter's
Syndrome
(XXY) | Chromoso
mal
Sex
chromoso
me | Non-disjunction of the sex chromosome during Anaphase I of meiosis> Trisomy (47,XXY) | Hypogonadism, tall stature, gynecomastia. Mild mental retardation. Usually not diagnosed until after puberty. One Barr body seen on buccal smear. | | Turner's
Syndrome (XO) | Chromoso
mal
Sex
chromoso
me | Non-disjunction of the sex chromosome during Anaphase I of meiosis> Monosomy (45,X) | Streak gonads, primary amenorrhea, webbed neck, short stature, coarctation of Aorta , infantile genitalia. <i>No mental retardation</i> . No Barr bodies visible on buccal smear. | |---|--|--|--| | XXX Syndrome | Chromoso
mal
Sex
chromoso
me | Trisomy (47,XXX) and other multiple X-chromosome abnormalities. | Usually phenotypically normal.
May see menstrual
abnormalities or mild mental
retardation in some cases. | | Ehlers-Danlos
Syndrome | Connective Tissue disease | Various defects in collagen synthesis. Type-I: Autosomal dominant, mildest form. Type-IV: autosomal dominant. Defect in reticular collagen (type-III) Type-VI: autosomal-recessive. Type-VII: Defect in collagen type I Type-IX: X-linked recessive | Laxity of joints, hyperextensibility of skin, poor wound healing, aneurysms. • Type-I: Diaphragmatic hernia. Common, normal life-expectancy. • Type-IV: Ecchymoses, arterial rupture. Dangerousdue to rupture aneurysms. • Type-VI: Retinal detachment, corneal rupture | | Osteogenesis
Imperfecta | Connectiv
e tissue
disease | Defects in Collagen Type I formation. | Multiple fractures after birth, blue sclerae, thin skin, progressive deafness in some types (due to abnormal middle ear ossicles). Type-I is most common; Type-II is most severe; Type-IV is mildest form. | | Cori's Disease
(Glycogen
Storage Disease
Type III) | Glycogen
Storage
Disease | Autosomal Recessive. Debranching enzyme deficiency (can only break down linear chains of glycogen, not at branch points)> accumulate glycogen in | Stunted growth, hepatomegaly, hypoglycemia. | liver, heart, skeletal muscle. | McArdle's
Disease
(Glycogen
Storage Disease
Type V) | Glycogen
Storage
Disease | Autosomal Recessive. muscle phosphorylase deficiency (cannot utilize glycogen in skeletal muscle)> accumulation of glycogen in skeletal muscle. | Muscle cramps, muscle
weakness, easy fatigability.
Myoglobinuria with strenuous
exercise. | |--|--|---|---| | Pompe's
Disease
(Glycogen
Storage Disease
Type II) | Glycogen
Storage
Disease | Autosomal Recessive. alpha- 1,4-Glucosidase deficiency (cannot break down glycogen)> accumulate glycogen in liver, heart, skeletal muscle. | Cardiomegaly, hepatomegaly, and systemic findings, leading to early death. | | Von Gierke's
Disease
(Glycogen
Storage Disease
Type I) | Glycogen
Storage
Disease | Autosomal Recessive. Glucose-6- Phosphatase deficiency (cannot break down glycogen)> accumulate glycogen in liver and kidney. | Severe fasting hypoglycemia, hepatomegaly from lots of glycogen in liver. | | Hemophilia A
(Factor VIII
Deficiency) | Hemophil
ia | X-Linked Recessive. Factor VIII deficiency | Hemorrhage, hematuria, hemarthroses. Prolonged PTT. | | Hemophilia B
(Factor IX
Deficiency) | Hemophil
ia | X-Linked Recessive. Factor IX deficiency. | Milder than Hemophilia A.
Hemorrhage, hematuria,
hemarthroses. Prolonged PTT. | | Von Willebrand
Disease | Hemophil
ia | Autosomal dominant and recessive varieties. Von Willebrand Factor deficiency> defect in initial formation of platelet plugs, and shorter half-life of Factor VIII in blood. | Hemorrhage, similar to hemophilia. Type-I: Most mild. Type-II: Intermediate. Type-III: most severe, with recessive inheritance (complete absence). | | Ataxia-
Telangiectasia | Immune deficiency Combined Deficiency | Autosomal Recessive. Unknown. Numerous chromosomal breaks and elevated AFP is found. Symptomatic by age 2 years. | Cerebellar ataxia, telangiectasia (enlarged capillaries of face and skin), B and T-Cell deficiencies , IgA deficiency. | | Chédiak-
Higashi
Syndrome | Immune
deficiency | Defect in polymerization of microtubules in neutrophils | Recurrent pyogenic infections, <i>Staphylococcus</i> , <i>Streptococcus</i> . | | | Phagocyte
Deficienc
y | in neutrophil migration and phagocytosis. Also results in failure in lysosomal function in neutrophils. | | |--|-----------------------------|---|--| | Chronic
Granulomatous
Disease | Immune
deficiency | X-Linked (usually) NADPH Oxidase deficiency> no formation of peroxides and | Failure of phagocytes leads to susceptibility to infections, especially <i>Staph</i> | | | Phagocyte
Deficienc
y | superoxides> no oxidative burst in phagocytes. | Aureus and Aspergillus spp. B and T cells usually remain normal. | | Chronic
Mucocutaneous
Candidiasis | Immune
deficiency | T-Cell deficiency specific to <i>Candida</i> . | Selective recurrent <i>Candida</i> infections. Treat with anti-fungal drugs. | | | T-Cell
Deficienc
y | | Trout with third ranger drugs. | | Job's Syndrome | Immune
deficiency | A failure to produce gamma- Interferon by T-Helper cells, | High histamine levels, eosinophilia. Recurrent cold (non- | | | Phagocyte
Deficienc
y | leading to an increase in T _H 2 cells (no negative feedback)> excessively high levels of IgE . | inflammatory) Staphylococcal abscesses (resulting from high histamine), eczema. | | Selective IgA
Deficiency | Immune
deficiency | IgA deficiency may be due to a failure of heavy-chain gene switching. | The most common congenital immune deficiency. There also exists selective IgM and IgG | | | B-Cell
Deficienc
y | 6 | deficiencies, but they are less common. | | Severe
Combined
Immunodeficie | Immune
deficiency | Autosomal Recessive. Adenosine Deaminase deficiency> | Severe deficiency in both
humoral and cellular immunity,
due to impaired DNA | | ncy (SCID) | Combined
Deficienc
y | accumulation of dATP> inhibit ribonucleotide reductase> decrease in DNA precursors | synthesis. Bone marrow transplant may be helpful in treatment. | | Thymic Aplasia
(DiGeorge
Syndrome) | Immune
deficiency | Failure of development of the 3 rd and 4 th Pharyngeal Pouches> agenesis of the | T-Cell deficiency from no thymus. Hypocalcemic tetany from primary parathyroid deficiency. | | | T-Cell
Deficienc
y | thymus and parathyroid glands. | | | Wiskott-
Aldrich
Syndrome X-Linked
Agammaglobuli
nemia (Bruton's
Disease) Fabry's Disease Gaucher's
Disease | Immune deficiency Combined Deficienc y Immune deficiency B-Cell Deficienc y Lysosoma 1 Storage Disease Lysosoma 1 Storage Disease | Inability to mount initial IgM response to the capsular polysaccharides of pyogenic bacteria. X-Linked. Mutation in gene coding for tyrosine kinase causes failure of Pre-B cells to differentiate into B-Cells. X-Linked Recessive. alpha-Galactosidase A deficiency> buildup of ceramide trihexosidein body tissues. Autosomal Recessive. Glucocerebrosidas e deficiency> accumulation of glucocerebrosides (gangliosides, sphingolipids) in lysosomes throughout the body. | In infancy, recurrent pyogenic infections, eczema, thrombocytopenia, excessive bleeding. IgG levels remain normal. Recurrent pyogenic infections after 6 months (when maternal antibodies wear off). Can treat with polyspecific gamma globulin preparations. Angiokeratomas (skin lesions) over lower trunk, fever, severe burning pain in extremities, cardiovascular and cerebrovascular involvement. • Type-I: Adult form. 80% of cases, retain partial activity. Hepatosplenomegaly, erosion of femoral head, mild anemia. Normal lifespan with treatment. • Type-II: Infantile form. Severe CNS involvement. Death before age 1. • Type-III: Juvenile form. Onset in early childhood, involving both CNS and viscera, but less severe than | |--|---|--|---| | Niemann-Pick
Lipidosis | Lysosoma
l Storage
Disease | Autosomal Recessive. Sphingomyelinase deficiency> accumulation of sphingomyelin in phagocytes. | Type II. Sphingomyelin- containing foamy histiocytes in reticuloendo-thelial system and spleen. Hepatosplenomegaly, anemia, fever, sometimes CNS | | Hunter's
Syndrome | Lysosoma
l Storage | X-Linked Recessive. L-iduronosulfate | deterioration. Death by age 3. Similar to but less severe than Hurler Syndrome. | | | Disease | sulfatase deficiency> buildup ofmucopolysaccharides (hepar an sulfate and dermatan sulfate) | Hepatosplenomegaly,
micrognathia, retinal
degeneration, joint stiffness,
mild retardation, cardiac
lesions. | |-------------------------|-----------------------------------|---|---| | Hurler's
Syndrome | Lysosoma
1 Storage
Disease | Autosomal Recessive. alpha-
L-iduronidase deficiency> accumulation
ofmucopolysaccharides (hepar
an sulfate, dermatan sulfate) in
heart, brain, liver, other organs. | Gargoyle-like facies,
progressive mental
deterioration, stubby fingers,
death by age 10. Similar to
Hunter's Syndrome. | | Tay-Sachs
Disease | Lysosoma
1 Storage
Disease | Autosomal Recessive. Hexosaminidase A deficiency> accumulation of G _{M2} ganglioside in neurons. | CNS degeneration, retardation, cherry red-spot of macula, blindness (amaurosis). Death before age 4. | | Albinism | Nitrogen
Metabolis
m Defect | Autosomal Recessive. Tyrosinase deficien cy> inability to synthesize melanin from tyrosine. Can result from a lack of migration of neural crest cells. | Depigmentation, pink eyes, increased risk of skin cancer. | | Alkaptonuria | Nitrogen
Metabolis
m Defect | Autosomal Recessive. Homogentisic Oxidase deficiency (inability to metabolize Phe and Tyr)> buildup and urinary excretion of homogentisic acid. | Urine turns dark and black on standing, ochronosis (dark pigmentation of fibrous and cartilage tissues), ochronotic arthritis, cardiac valve involvement. Disease is generally <i>benign</i> . | | Homocystinuria | Nitrogen
Metabolis
m Defect | Autosomal Recessive. Cystathionine synthase defect (either deficiency, or lost affinity for pyridoxine, Vit. B ₆)> | Mental retardation, ectopia
lentis, sparse blond hair, genu
valgum, failure to thrive,
thromboembolic episodes, fatty
changes of liver. | | | | buildup of homocystine and deficiency of cysteine. | Treatment: Cysteine supplementation, give excess pyridoxine to compensate for lost pyridoxine affinity. | | Lesch-Nyhan
Syndrome | Nitrogen
Metabolis | X-Linked
Recessive. Hypoxanthine- | Hyperuricemia (gout), mental retardation, self-mutilation | | | m Defect | Guanine Phosphoribosyltransferase (HGPRT) deficiency> no salvage pathway for purine re- synthesis> buildup of purine metabolites | (autistic behavior),
choreoathetosis, spasticity. | |---|-----------------------------------|---|--| | Maple Syrup
Urine Disease | Nitrogen
Metabolis
m Defect | Autosomal Recessive. Deficiency of branched chain keto-acid decarboxylase > no degradation of branched- chain amino acids> buildup of isoleucine , valine , leucine . | Severe CNS defects, mental retardation, death. Person smells like maple syrup or burnt sugar. Treatment: remove the amino acids from diet. | | Phenylketonuri
a (PKU) | Nitrogen
Metabolis
m Defect | Autosomal Recessive. Phenylalanine hydroxylase deficiency (cannot break down Phe nor make Tyr)> buildup of phenylalanine, phenyl ketones (phenylacetate, phenyl lactate, phenylpyruvate) in body tissues and CNS. | Symptoms result from accumulation of phenylalanine itself. Mental deterioration, hypopigmentation (blond hair and blue eyes), mousy body odor (from phenylacetic acid in urine and sweat). Treatment: remove phenylalanine from diet. | | Glucose-6-
Phosphate
Dehydrogenase
(G6PD)
Deficiency | RBC
Disease | X-Linked Recessive. Glucose-
6-Phosphate Dehydrogenase
(G6PD) deficiency> no
hexose monophosphate shunt
> deficiency in NADPH
> inability to
maintain glutathione in
reduced form, in RBC's | Susceptibility to oxidative damage to RBC's, leading to hemolytic anemia. Can be elicited by drugs (primaquine, sulfonamides, aspirin), fava beans (favism). More prevalent in blacks. | | Glycolytic
enzyme
deficiencies | RBC
Disease | Autosomal Recessive. Defect
in hexokinase, glucose-
phosphate isomerase, aldolase,
triose-phosphate isomerase,
phosphate-glycerate kinase, or
enolase. Any enzyme in
glycolysis pathway. | Hemolytic anemia results from
any defect in the glycolysis
pathway, as RBC's depend on
glycolysis for energy. | | Autosomal
Recessive
Polycystic
Kidney Disease
(ARPKD) | Renal | Autosomal Recessive. | Numerous, diffuse bilateral cysts formed in the collecting ducts. Associated with hepatic fibrosis. | | Bartter's
Syndrome | Renal | Juxtaglomerular Cell
Hyperplasia, leading
to primary hyper-reninemia . | Elevated renin and aldosterone, hypokalemic alkalosis. <i>No hypertension</i> . | |--|-------------------------------------|---|---| | Fanconi's Syndrome Type I (Child-onset cystinosis) | Renal | Autosomal Recessive. Deficient resorption in proximal tubules. | (1) Cystine deposition throughout body, cystinuria. (2) Defective tubular resorption leads to amino-aciduria, polyuria, glycosuria, chronic acidosis; Hypophosphatemia a ndVitamin-D-resistant Rickets. | | Fanconi's
Syndrome II
(Adult-onset) | Renal | Autosomal Recessive. Defective resorption in proximal tubules. | Similar to Fanconi Syndrome
Type I, but without the
cystinosis. Adult
onset osteomalacia , amino-
aciduria, polyuria, glycosuria. | | Autosomal
Dominant
Polycystic
Kidney Disease
(ADPKD) | Renal Autosoma l Dominant Disorders | Autosomal Dominant. | Numerous, disparate,
heterogenous renal cysts
occurring bilaterally. Onset in
adult life. Associated with liver
cysts. |