TABLE of GENETIC DISORDERS

Disease	Category	Pathogenesis / Heredity	Pathology, Cardinal Symptoms
Cystic Fibrosis		Autosomal Recessive. CFTR gene defect on Chrom 7> No Cl ⁻ transport and failure to hydrate mucous secretions (no NaCl transport)> excessively viscous mucoid exocrine secretions	Meconium ileus (caused by thick, mucoid meconium), respiratory bronchiectasis, <i>Pseudomonas</i> pn eumonia, pancreatic insufficiency, hypertonic (high Cl ⁻ concentration) sweat.
Fanconi Anemia		Autosomal Recessive congenital	Normocytic anemia with neutropenia.
		pancytopenia.	Short stature, microcephaly, hypogenitalism, strabismus, anomalies of the thumbs, radii, and kidneys, mental retardation, and microphthalmia.
Hartnup's Disease		Autosomal Recessive. Defect in GI uptake of neutral amino acids> malabsorption of tryptophan (niacin precursor)> niacin deficiency among other things.	Pellagra-like syndrome (diarrhea, dementia, dermatitis), light-sensitive skin rash, temporary cerebellar ataxia.
Kartagener's Syndrome		Autosomal Recessive. Defect in dynein arms > lost motility of cilia	Recurrent sinopulmonary infections (due to impaired ciliary tract). Situs inversus, due to impaired ciliary motion during embryogenesis: lateral transposition of lungs, abdominal and thoracic viscera are on opposite sides of the body as normal. Possible dextrocardia, male sterility.
Pyruvate Dehydrogenase		Autosomal Recessive. Pyruvate	Neurologic defects.
Deficiency		Dehydrogenase deficiency> buildup of lactate and pyruvate> lactic acidosis.	Treatment: Increase intake of ketogenic nutrients (leucine , lysine)> increase

			other sources.
Xeroderma Pigmentosum		Autosomal Recessive. Defect in DNA repair, inability to repair thymine dimers resulting from UV- light exposure> excessive skin damage and skin cancer.	Dry skin, melanomas, premalignant lesions, other cancers. Ophthalmic and neurologic abnormalities.
Familial Hypercholester olemia	Autosoma l Dominant Disorders	Autosomal Dominant. LDL-Receptor defect.	Heterozygous: accelerated atherosclerosis. Homozygous: accelerated atherosclerosis, MI by age 35, xanthomas .
Hereditary Hemorrhagic Telangiectasia (Osler-Weber- Rendu Syndrome)	Autosoma l Dominant Disorders	Autosomal Dominant.	Telangiectasias of skin and mucous membranes.
Hereditary Spherocytosis	Autosoma l Dominant Disorders	Autosomal Dominant. Band- 3 deficiency in RBC membrane> spherical shape to cells. Other RBC structural enzyme deficiencies can cause it, too.	Sequestration of spherocytes in spleen> hemolytic anemia.
Huntington's Disease	Autosoma l Dominant Disorders	Autosomal Dominant, 100% penetrance. Genetic defect on Chrom 4	Progressive dementia with onset in adulthood, choreiform movements, athetosis.
Marfan's Syndrome	Autosoma l Dominant Disorders	Autosomal Dominant. Fibrillin deficiency> faulty scaffolding in connective tissue (elastin has no anchor).	Arachnodactyly, dissecting aortic aneurysms, ectopia lentis (subluxation of lens), mitral valve prolapse.
Neurofibromato sis (Von Recklinghausen Disease)	Autosoma l Dominant Disorders	Autosomal Dominant. NF1 gene defect (no GTPase protein)> dysregulation of <i>Ras</i> tumor-suppressor protein.	Multiple neurofibromas (Café au Lait spots) which may become malignant, Lisch nodules (pigmented hamartomas of the iris).

formation of Acetyl-CoA from

Increased risk for tumors:

			pheochromocytoma, Wilms tumor, Rhabdomyosarcoma, leukemias.
Tuberous Sclerosis	Autosoma l Dominant Disorders	Autosomal Dominant.	Tubers (glial nodules), seizures, mental retardation. Associated with adenoma sebaceum (facial lesion), myocardial rhabdomyomas, renal angiomyolipomas.
Von Hippel- Lindau Syndrome	Autosoma l Dominant Disorders	Autosomal Dominant, short arm of chromosome 3. Same genetic region is associated with incidence of renal cell carcinoma .	(1) Hemangioblastomas of cerebellum, medulla, or retina, (2) adenomas, (3) cysts in visceral organs. High risk for renal cell carcinoma.
Congenital Fructose Intolerance	Carbohyd rate Metabolis m Defect	Autosomal Recessive. Aldolase B deficiency> buildup of Fructose-1-Phosphate in tissues> inhibit glycogenolysis and gluconeogenesis.	Severe hypoglycemia . Treatment: <i>Remove fructose from diet</i> .
Galactosemia	Carbohyd rate Metabolis m Defect	Autosomal Recessive. Inability to convert galactose to glucose> accumulation of galactose in many tissues.	Failure to thrive, infantile cataracts, mental retardation. Progressive hepatic failure, cirrhosis , death.
		(1) Classic form: Galactose-1- phosphate Uridyltransferase deficiency.	Galactokinase-deficiency: infantile cataracts are prominent.
		(2) Rarer form: Galactokinase deficienc y.	Treatment: in either case, remove galactose from diet.
Angelman Syndrome	Chromoso mal	Deletion of part of short arm of chromosome 15 , maternal copy . An example of genomic imprinting .	Mental retardation, ataxic gait, seizures. Inappropriate laughter.
Cri du Chat Syndrome	Chromoso mal	5p- , deletion of the long arm of chromosome 5.	"Cry of the cat." Severe mental retardation, microcephaly, cat-like cry. Low birth-weight, round-face, hypertelorism

			(wide-set eyes), low-set ears, epicanthal folds.
Down Syndrome (Trisomy 21)	Chromoso mal	Trisomy 21, with risk increasing with maternal age. Familial form (no ageassociated risk) is translocation t(21,x) in a minority of cases.	Most common cause of mental retardation. Will see epicanthal folds, simian crease, brushfield spots in eyes. Associated syndromes: congenital heart disease, leukemia,premature Alzheimer's disease (same morphological changes).
Edward's Syndrome (Trisomy 18)	Chromoso mal	Trisomy 18	Mental retardation, micrognathia, rocker-bottom feet , congenital heart disease, flexion deformities of fingers. Death by 1 year old.
Patau's Syndrome (Trisomy 13)	Chromoso mal	Trisomy 13	Mental retardation, microphthalmia, cleft lip and palate , polydactyly, rocker- bottom feet, congenital heart disease. Similar to and more severe than Edward's Syndrome. Death by 1 year old.
Prader-Willi Syndrome	Chromoso mal	Deletion of part of short arm of chromosome 15 , paternal copy . An example of genomic imprinting.	Mental retardation, short stature, hypotonia, obesity and huge appetite after infancy. Small hands and feet, hypogonadism.
Fragile-X Syndrome	Chromoso mal Sex chromoso me	Progressively longer tandem repeats on the long arm of the X-chromosome. The longer the number of repeats, the worse the syndrome. Tandem repeats tend to accumulate through generations.	Second most common cause of mental retardation next to Down Syndrome. Macroorchidism (enlarged testes) in males.
Klinefelter's Syndrome (XXY)	Chromoso mal Sex chromoso me	Non-disjunction of the sex chromosome during Anaphase I of meiosis> Trisomy (47,XXY)	Hypogonadism, tall stature, gynecomastia. Mild mental retardation. Usually not diagnosed until after puberty. One Barr body seen on buccal smear.

Turner's Syndrome (XO)	Chromoso mal Sex chromoso me	Non-disjunction of the sex chromosome during Anaphase I of meiosis> Monosomy (45,X)	Streak gonads, primary amenorrhea, webbed neck, short stature, coarctation of Aorta , infantile genitalia. <i>No mental retardation</i> . No Barr bodies visible on buccal smear.
XXX Syndrome	Chromoso mal Sex chromoso me	Trisomy (47,XXX) and other multiple X-chromosome abnormalities.	Usually phenotypically normal. May see menstrual abnormalities or mild mental retardation in some cases.
Ehlers-Danlos Syndrome	Connective Tissue disease	 Various defects in collagen synthesis. Type-I: Autosomal dominant, mildest form. Type-IV: autosomal dominant. Defect in reticular collagen (type-III) Type-VI: autosomal-recessive. Type-VII: Defect in collagen type I Type-IX: X-linked recessive 	Laxity of joints, hyperextensibility of skin, poor wound healing, aneurysms. • Type-I: Diaphragmatic hernia. Common, normal life-expectancy. • Type-IV: Ecchymoses, arterial rupture. Dangerousdue to rupture aneurysms. • Type-VI: Retinal detachment, corneal rupture
Osteogenesis Imperfecta	Connectiv e tissue disease	Defects in Collagen Type I formation.	Multiple fractures after birth, blue sclerae, thin skin, progressive deafness in some types (due to abnormal middle ear ossicles). Type-I is most common; Type-II is most severe; Type-IV is mildest form.
Cori's Disease (Glycogen Storage Disease Type III)	Glycogen Storage Disease	Autosomal Recessive. Debranching enzyme deficiency (can only break down linear chains of glycogen, not at branch points)> accumulate glycogen in	Stunted growth, hepatomegaly, hypoglycemia.

liver, heart, skeletal muscle.

McArdle's Disease (Glycogen Storage Disease Type V)	Glycogen Storage Disease	Autosomal Recessive. muscle phosphorylase deficiency (cannot utilize glycogen in skeletal muscle)> accumulation of glycogen in skeletal muscle.	Muscle cramps, muscle weakness, easy fatigability. Myoglobinuria with strenuous exercise.
Pompe's Disease (Glycogen Storage Disease Type II)	Glycogen Storage Disease	Autosomal Recessive. alpha- 1,4-Glucosidase deficiency (cannot break down glycogen)> accumulate glycogen in liver, heart, skeletal muscle.	Cardiomegaly, hepatomegaly, and systemic findings, leading to early death.
Von Gierke's Disease (Glycogen Storage Disease Type I)	Glycogen Storage Disease	Autosomal Recessive. Glucose-6- Phosphatase deficiency (cannot break down glycogen)> accumulate glycogen in liver and kidney.	Severe fasting hypoglycemia, hepatomegaly from lots of glycogen in liver.
Hemophilia A (Factor VIII Deficiency)	Hemophil ia	X-Linked Recessive. Factor VIII deficiency	Hemorrhage, hematuria, hemarthroses. Prolonged PTT.
Hemophilia B (Factor IX Deficiency)	Hemophil ia	X-Linked Recessive. Factor IX deficiency.	Milder than Hemophilia A. Hemorrhage, hematuria, hemarthroses. Prolonged PTT.
Von Willebrand Disease	Hemophil ia	Autosomal dominant and recessive varieties. Von Willebrand Factor deficiency> defect in initial formation of platelet plugs, and shorter half-life of Factor VIII in blood.	Hemorrhage, similar to hemophilia. Type-I: Most mild. Type-II: Intermediate. Type-III: most severe, with recessive inheritance (complete absence).
Ataxia- Telangiectasia	Immune deficiency Combined Deficiency	Autosomal Recessive. Unknown. Numerous chromosomal breaks and elevated AFP is found. Symptomatic by age 2 years.	Cerebellar ataxia, telangiectasia (enlarged capillaries of face and skin), B and T-Cell deficiencies , IgA deficiency.
Chédiak- Higashi Syndrome	Immune deficiency	Defect in polymerization of microtubules in neutrophils	Recurrent pyogenic infections, <i>Staphylococcus</i> , <i>Streptococcus</i> .

	Phagocyte Deficienc y	in neutrophil migration and phagocytosis. Also results in failure in lysosomal function in neutrophils.	
Chronic Granulomatous Disease	Immune deficiency	X-Linked (usually) NADPH Oxidase deficiency> no formation of peroxides and	Failure of phagocytes leads to susceptibility to infections, especially <i>Staph</i>
	Phagocyte Deficienc y	superoxides> no oxidative burst in phagocytes.	Aureus and Aspergillus spp. B and T cells usually remain normal.
Chronic Mucocutaneous Candidiasis	Immune deficiency	T-Cell deficiency specific to <i>Candida</i> .	Selective recurrent <i>Candida</i> infections. Treat with anti-fungal drugs.
	T-Cell Deficienc y		Trout with third ranger drugs.
Job's Syndrome	Immune deficiency	A failure to produce gamma- Interferon by T-Helper cells,	High histamine levels, eosinophilia. Recurrent cold (non-
	Phagocyte Deficienc y	leading to an increase in T _H 2 cells (no negative feedback)> excessively high levels of IgE .	inflammatory) Staphylococcal abscesses (resulting from high histamine), eczema.
Selective IgA Deficiency	Immune deficiency	IgA deficiency may be due to a failure of heavy-chain gene switching.	The most common congenital immune deficiency. There also exists selective IgM and IgG
	B-Cell Deficienc y	6	deficiencies, but they are less common.
Severe Combined Immunodeficie	Immune deficiency	Autosomal Recessive. Adenosine Deaminase deficiency>	Severe deficiency in both humoral and cellular immunity, due to impaired DNA
ncy (SCID)	Combined Deficienc y	accumulation of dATP> inhibit ribonucleotide reductase> decrease in DNA precursors	synthesis. Bone marrow transplant may be helpful in treatment.
Thymic Aplasia (DiGeorge Syndrome)	Immune deficiency	Failure of development of the 3 rd and 4 th Pharyngeal Pouches> agenesis of the	T-Cell deficiency from no thymus. Hypocalcemic tetany from primary parathyroid deficiency.
	T-Cell Deficienc y	thymus and parathyroid glands.	

Wiskott- Aldrich Syndrome X-Linked Agammaglobuli nemia (Bruton's Disease) Fabry's Disease Gaucher's Disease	Immune deficiency Combined Deficienc y Immune deficiency B-Cell Deficienc y Lysosoma 1 Storage Disease Lysosoma 1 Storage Disease	Inability to mount initial IgM response to the capsular polysaccharides of pyogenic bacteria. X-Linked. Mutation in gene coding for tyrosine kinase causes failure of Pre-B cells to differentiate into B-Cells. X-Linked Recessive. alpha-Galactosidase A deficiency> buildup of ceramide trihexosidein body tissues. Autosomal Recessive. Glucocerebrosidas e deficiency> accumulation of glucocerebrosides (gangliosides, sphingolipids) in lysosomes throughout the body.	In infancy, recurrent pyogenic infections, eczema, thrombocytopenia, excessive bleeding. IgG levels remain normal. Recurrent pyogenic infections after 6 months (when maternal antibodies wear off). Can treat with polyspecific gamma globulin preparations. Angiokeratomas (skin lesions) over lower trunk, fever, severe burning pain in extremities, cardiovascular and cerebrovascular involvement. • Type-I: Adult form. 80% of cases, retain partial activity. Hepatosplenomegaly, erosion of femoral head, mild anemia. Normal lifespan with treatment. • Type-II: Infantile form. Severe CNS involvement. Death before age 1. • Type-III: Juvenile form. Onset in early childhood, involving both CNS and viscera, but less severe than
Niemann-Pick Lipidosis	Lysosoma l Storage Disease	Autosomal Recessive. Sphingomyelinase deficiency> accumulation of sphingomyelin in phagocytes.	Type II. Sphingomyelin- containing foamy histiocytes in reticuloendo-thelial system and spleen. Hepatosplenomegaly, anemia, fever, sometimes CNS
Hunter's Syndrome	Lysosoma l Storage	X-Linked Recessive. L-iduronosulfate	deterioration. Death by age 3. Similar to but less severe than Hurler Syndrome.

	Disease	sulfatase deficiency> buildup ofmucopolysaccharides (hepar an sulfate and dermatan sulfate)	Hepatosplenomegaly, micrognathia, retinal degeneration, joint stiffness, mild retardation, cardiac lesions.
Hurler's Syndrome	Lysosoma 1 Storage Disease	Autosomal Recessive. alpha- L-iduronidase deficiency> accumulation ofmucopolysaccharides (hepar an sulfate, dermatan sulfate) in heart, brain, liver, other organs.	Gargoyle-like facies, progressive mental deterioration, stubby fingers, death by age 10. Similar to Hunter's Syndrome.
Tay-Sachs Disease	Lysosoma 1 Storage Disease	Autosomal Recessive. Hexosaminidase A deficiency> accumulation of G _{M2} ganglioside in neurons.	CNS degeneration, retardation, cherry red-spot of macula, blindness (amaurosis). Death before age 4.
Albinism	Nitrogen Metabolis m Defect	Autosomal Recessive. Tyrosinase deficien cy> inability to synthesize melanin from tyrosine. Can result from a lack of migration of neural crest cells.	Depigmentation, pink eyes, increased risk of skin cancer.
Alkaptonuria	Nitrogen Metabolis m Defect	Autosomal Recessive. Homogentisic Oxidase deficiency (inability to metabolize Phe and Tyr)> buildup and urinary excretion of homogentisic acid.	Urine turns dark and black on standing, ochronosis (dark pigmentation of fibrous and cartilage tissues), ochronotic arthritis, cardiac valve involvement. Disease is generally <i>benign</i> .
Homocystinuria	Nitrogen Metabolis m Defect	Autosomal Recessive. Cystathionine synthase defect (either deficiency, or lost affinity for pyridoxine, Vit. B ₆)>	Mental retardation, ectopia lentis, sparse blond hair, genu valgum, failure to thrive, thromboembolic episodes, fatty changes of liver.
		buildup of homocystine and deficiency of cysteine.	Treatment: Cysteine supplementation, give excess pyridoxine to compensate for lost pyridoxine affinity.
Lesch-Nyhan Syndrome	Nitrogen Metabolis	X-Linked Recessive. Hypoxanthine-	Hyperuricemia (gout), mental retardation, self-mutilation

	m Defect	Guanine Phosphoribosyltransferase (HGPRT) deficiency> no salvage pathway for purine re- synthesis> buildup of purine metabolites	(autistic behavior), choreoathetosis, spasticity.
Maple Syrup Urine Disease	Nitrogen Metabolis m Defect	Autosomal Recessive. Deficiency of branched chain keto-acid decarboxylase > no degradation of branched- chain amino acids> buildup of isoleucine , valine , leucine .	Severe CNS defects, mental retardation, death. Person smells like maple syrup or burnt sugar. Treatment: remove the amino acids from diet.
Phenylketonuri a (PKU)	Nitrogen Metabolis m Defect	Autosomal Recessive. Phenylalanine hydroxylase deficiency (cannot break down Phe nor make Tyr)> buildup of phenylalanine, phenyl ketones (phenylacetate, phenyl lactate, phenylpyruvate) in body tissues and CNS.	Symptoms result from accumulation of phenylalanine itself. Mental deterioration, hypopigmentation (blond hair and blue eyes), mousy body odor (from phenylacetic acid in urine and sweat). Treatment: remove phenylalanine from diet.
Glucose-6- Phosphate Dehydrogenase (G6PD) Deficiency	RBC Disease	X-Linked Recessive. Glucose- 6-Phosphate Dehydrogenase (G6PD) deficiency> no hexose monophosphate shunt > deficiency in NADPH > inability to maintain glutathione in reduced form, in RBC's	Susceptibility to oxidative damage to RBC's, leading to hemolytic anemia. Can be elicited by drugs (primaquine, sulfonamides, aspirin), fava beans (favism). More prevalent in blacks.
Glycolytic enzyme deficiencies	RBC Disease	Autosomal Recessive. Defect in hexokinase, glucose- phosphate isomerase, aldolase, triose-phosphate isomerase, phosphate-glycerate kinase, or enolase. Any enzyme in glycolysis pathway.	Hemolytic anemia results from any defect in the glycolysis pathway, as RBC's depend on glycolysis for energy.
Autosomal Recessive Polycystic Kidney Disease (ARPKD)	Renal	Autosomal Recessive.	Numerous, diffuse bilateral cysts formed in the collecting ducts. Associated with hepatic fibrosis.

Bartter's Syndrome	Renal	Juxtaglomerular Cell Hyperplasia, leading to primary hyper-reninemia .	Elevated renin and aldosterone, hypokalemic alkalosis. <i>No hypertension</i> .
Fanconi's Syndrome Type I (Child-onset cystinosis)	Renal	Autosomal Recessive. Deficient resorption in proximal tubules.	(1) Cystine deposition throughout body, cystinuria. (2) Defective tubular resorption leads to amino-aciduria, polyuria, glycosuria, chronic acidosis; Hypophosphatemia a ndVitamin-D-resistant Rickets.
Fanconi's Syndrome II (Adult-onset)	Renal	Autosomal Recessive. Defective resorption in proximal tubules.	Similar to Fanconi Syndrome Type I, but without the cystinosis. Adult onset osteomalacia , amino- aciduria, polyuria, glycosuria.
Autosomal Dominant Polycystic Kidney Disease (ADPKD)	Renal Autosoma l Dominant Disorders	Autosomal Dominant.	Numerous, disparate, heterogenous renal cysts occurring bilaterally. Onset in adult life. Associated with liver cysts.